
www.manaraa.com

ABSTRACT

REED, JAMES ALLEN. A Low Rank Approach to Computing Derivatives Using

Automatic Differentiation. (Under the direction of Hany S. Abdel-Khalik).

This manuscript outlines a new approach for increasing the efficiency of applying automatic

differentiation (AD) to large scale computational models. By using the principles of the

Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and

higher orders can be calculated using minimized computational resources. The output

obtained from nuclear reactor calculations typically has a much smaller numerical rank

compared to the number of inputs and outputs. This rank deficiency can be exploited to

reduce the number of derivatives that need to be calculated using AD. The effective rank can

be determined according to ESM by computing derivatives with AD at random inputs.

Reduced or pseudo variables are then defined and new derivatives are calculated with respect

to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia.

OpenAD is used to determine the effective rank and the subspace that contains the

derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo

variables for the desired order. The overall approach is applied to a few simple mathematical

model problems and to MATWS, a simplified safety code for sodium cooled reactors.

www.manaraa.com

© Copyright 2012 by James Allen Reed

All Rights Reserved

www.manaraa.com

A Low Rank Approach to Computing Derivatives Using Automatic Differentiation

by

James Allen Reed

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the degree of

Master of Science

Nuclear Engineering

Raleigh, North Carolina

2012

APPROVED BY:

_______________________________ ______________________________

Steven Campbell Paul Hovland

Hany S. Abdel-Khalik

Committee Chair

www.manaraa.com

ii

BIOGRAPHY

James A. Reed was born on October 18
th

 1987 in Beaver, Pennsylvania. He attended

Penn State University in State College, PA from 2006 to 2010 where he obtained Bachelor of

Science degrees in Nuclear and Mechanical Engineering with honors in Nuclear Engineering.

Upon graduation from Penn State, he continued his studies in Nuclear Engineering at North

Carolina State University in Raleigh. While at NCSU, he started working on using automatic

differentiation as a means to calculate derivatives from nuclear reactor codes for use in

sensitivity analysis and uncertainty quantification. He collaborated with the Mathematics

and Computer Science Division at Argonne National Laboratory and the work performed is

presented here in this thesis.

www.manaraa.com

iii

ACKNOWLEDGMENTS

I would first like to thank my parents for their support. Without them, I would not

have any chance to be in the position that I am today. I would also like to thank Dr. Abdel-

Khalik for his guidance and for allowing me the opportunity to work under him at North

Carolina State University. I must also thank Paul Hovland for sponsoring me during the

summer at Argonne National Laboratory where essential work for this project was

completed. I very grateful for the assistance I received from Jean Utke while at Argonne.

Without his work on OpenAD and Rapsodia, none of this would be possible. Last but

certainly not least, I am dearly thankful for the love and support from Casandra Niebel, who

kept me sane during the entire process.

www.manaraa.com

iv

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER 1 Introduction ... 1

1.1 Applications of Automatic Differentiation ... 1

1.2 Uses of Derivatives ... 1

1.3 Problem Reduction via the Efficient Subspace Method ... 4

1.4 Multi-scale Phenomena Modeling .. 5

1.5 Thesis Contents ... 6

CHAPTER 2 Computational Methods .. 8

2.1 AD Theory .. 8

2.1.1 Forward Mode ... 12

2.1.2 Reverse Mode ... 14

2.1.3 Active Variables.. 15

2.2 OpenAD .. 16

2.3 Rapsodia .. 16

2.4 Efficient Subspace Method ... 18

2.5 General Methodology ... 20

CHAPTER 3 Implementation.. 26

3.1 Implementation on a General FORTAN Code ... 26

CHAPTER 4 Examples and Test Cases .. 32

4.1 Two-minute AD Examples ... 32

4.1.1 OpenAD/F Example.. 32

4.1.2 Rapsodia Example .. 36

4.2 Matrix-Vector Product Example ... 41

4.3 Scalar-valued Model Example .. 48

4.4 Vector-valued Model Example ... 53

4.5 Important Directions ... 56

4.6 Third Order function Approximated with Second Order derivatives 62

4.7 MATWS Test Case ... 66

CHAPTER 5 Conclusions and Future Work Recommendations .. 72

www.manaraa.com

v

5.1 Conclusions ... 72

5.2 Future Work Recommendations ... 72

www.manaraa.com

vi

LIST OF TABLES

Table 2-1: Evaluation Trace for Equation (4) ... 10
Table 2-2: Forward mode evaluation trace ... 13

Table 2-3: Reverse mode evaluation trace .. 17
Table 4-1: Results for the scalar-valued model example .. 52
Table 4-2: Results for the vector-valued model example ... 55
Table 4-3: Error criterion evaluations with random orthogonal inputs 61
Table 4-4: Error criterion evaluations with random inputs ... 61

Table 4-5: Surrogate model error evaluation around one point .. 64
Table 4-6: MATWS test case results .. 71

www.manaraa.com

vii

LIST OF FIGURES

Figure 2.1: Computation Graph of Table 2-1 ... 11
Figure 4.1: Simple subroutine for ‘Two-minute’ forward OpenAD example 33

Figure 4.2: Main program used in the ‘Two-minute’ forward OpenAD example.................. 33
Figure 4.3: Output for the ‘Two-minute’ forward OpenAD example 35

Figure 4.4: Makefile contents for compiling and linking the ‘Two-minute’ forward

OpenAD example.. 35
Figure 4.5: Example reverse mode main program .. 37
Figure 4.6: Reverse mode example output ... 37

Figure 4.7: Rapsodia prepped subroutine for the ‘Two-minute’ example 37
Figure 4.8: Main program for the ‘Two-minute’ Rapsodia example...................................... 39

Figure 4.9: Makefile contents for compiling and linking the ‘Two-minute’ Rapsodia

example (first order) ... 40

Figure 4.10: Rapsodia example first order results .. 42

Figure 4.11: Rapsodia example second order results .. 42
Figure 4.12: Rapsodia example third order results ... 43
Figure 4.13: Matrix-vector product code with pseudo response definition 45

Figure 4.14: Matrix-vector product code with pseudo input definition 45
Figure 4.15: Singular value distribution for the matrix-vector product example 47

Figure 4.16: Python script used for the scalar-valued model example 50
Figure 4.17: Vector projection onto a plane ... 57
Figure 4.18: Graphical representation of the problem directions with the possible sampling

areas indicated ... 60

Figure 4.19: Second order surrogate model plotted with actual function 65

Figure 4.20: Fuel temperature for variations of the axial expansion reactivity coefficient 67
Figure 4.21: Fuel temperature for variations of the Doppler reactivity coefficient 67

Figure 4.22: Fuel temperature for variations of the coolant reactivity coefficient 68
Figure 4.23: Fuel temperature for variations of the control rod expansion reactivity

coefficient ... 68

Figure 4.24: Fuel temperature for variations of the radial core expansion coefficient 69

www.manaraa.com

Chapter 1: Introduction

1

CHAPTER 1 Introduction

1.1 Applications of Automatic Differentiation

Because detailed nuclear reactor calculations involve large input and output streams,

calculating derivative information can be a very time consuming task. Derivative

information is required for many aspects of nuclear engineering and analysis, such as

sensitivity analysis, design optimization, code-based uncertainty propagation, and data

assimilation. One tool that can be used to facilitate the calculation of derivatives is automatic

differentiation (AD) software. AD is a technique to reinterpret or completely transform a

computer program implementing a numerical model with the goal to calculate the derivatives

of specified output variables of the model with respect to specified input variables. The

principal method of AD is the application of the chain rule to the given elemental

decomposition of a mathematical function [1]. With continuing advances in computer

power, the application of AD is becoming a more feasible and attractive option for the

calculation of accurate derivatives [2] [3].

1.2 Uses of Derivatives

Derivative information is essential to sensitivity analysis, uncertainty quantification,

design optimization, data assimilation, and surrogate modeling. Sensitivity analysis involves

relating the changes in the outputs of a model to changes in the inputs. This is usually

accomplished by using the Jacobian operator, a matrix of first order derivatives. Uncertainty

www.manaraa.com

Chapter 1: Introduction

2

quantification can utilize model parameter sensitivities to estimate the potential error in

outputs in order to validate model. Derivatives are used in design optimization problems in

order to effectively tweak design parameters to obtain optimal performance. Data

assimilation uses derivatives for statistical interpolation of given data in order to estimate the

state of a given system. Surrogate modeling requires derivatives in order to build an

approximate model of a system via a truncated Taylor expansion.

The means of obtaining the full derivatives that populate the Jacobian matrix for a

sufficient number of model operating points is a very time and resource consuming task. AD

can be used to obtain the derivative values to within machine precision. Other possible

methods that are used for obtaining derivatives from computer codes of engineering models

involve hand-coding derivatives and using finite differences, but some of the more advanced

methods are the Generalized Perturbation Method and the Adjoint Method [4]. These

methods generally allow the computer code to be run faster than the corresponding AD

versions of the code, but the accuracy is generally lower and there is more room for error.

Therefore, it is desirable to enhance the efficiency of using AD and maintain acceptable

accuracy.

Two software package options for AD are OpenAD (www.mcs.anl.gov/OpenAD) and

Rapsodia (www.mcs.anl.gov/Rapsodia). In OpenAD, the derivative evaluation is performed

by a program resulting from the analysis and transformation of the original program that

implements the mathematical function or model of interest [4]. While OpenAD relies on

source transformation to accomplish derivative calculations, the Rapsodia tool uses operator

www.manaraa.com

Chapter 1: Introduction

3

overloading as the vehicle of attaching derivative computations to the elementary operations

provided by the programming language such as the arithmetic operators and intrinsic

functions sin(x), exp(x), and so forth [5]. In our context, we use OpenAD with the so-called

reverse mode providing for the efficient computation of gradients with respect to a large

number of inputs. In contrast, Rapsodia implements higher order derivative computation in

forward mode. It is normally efficient for a small number of input variables and the

overloading overhead becomes negligible with higher derivative order. Both approaches are,

in principle, capable of calculating higher order derivatives. Higher-order derivatives with

source transformation by repeated application of the transformation tool increases complexity

of the tool and the program size and has not been shown to yield large benefits when

compared to operator overloading keeping in mind the expected small number of input

variables.

In nuclear engineering, derivatives are mainly used for the purposes of sensitivity

analysis and uncertainty quantification. Computational methods and uncertainties in input

data are the main limitation of the calculations necessary to design nuclear reactor systems.

Sensitivity analysis is often used to analyze the nuclear fuel cycle and the behavior of the

fuel. In analyzing a nuclear fuel rod, the sensitivities of key variables (fuel centerline

temperature, fission gas release, clad stress, etc.) to input parameters are found to be highly

non-intuitive and strongly dependent on the fuel-clad gap status and the history of the fuel

during the cycle [6]. The number of variables analyzed can be quite large, especially when

highly dimensioned reactor wide calculations are performed. For example, the outputs of

www.manaraa.com

Chapter 1: Introduction

4

interest could be the neutron flux, fuel temperature, moderator temperature, and void fraction

at thousands of points throughout the reactor. The inputs of interest could be the complete

set of neutron cross sections that quantify the probabilities of different reactions taking place

in each type of material. It is easy to see that as the dimensions and details of the

calculations increase, the number of derivatives increases as well. The increase in the

number of higher order derivatives grows exponentially. For typical nuclear reactor

calculations, the number of inputs n and outputs m are on the orders of 610 and 510 ,

respectively. The numerical rank r of these problems is often orders of magnitude smaller

than the size of the input and output data streams with r typically around 210 [7]. This fact

can be used to reduce the effective dimensions of the problem and lessen the computational

time and storage requirements.

1.3 Problem Reduction via the Efficient Subspace Method

The mathematical theory of efficient subspace methods (ESM) recognizes that the

design and/or analysis of an engineering system is often judged by a few macroscopic

metrics that capture the overall behavior of the system [8]. ESM exploits the ill-conditioning

of the Jacobian matrix to reduce the number of code runs of the forward and reverse modes

of AD to a minimum [7]. ESM utilizes various properties from linear algebra including

orthogonality and the singular value decomposition (SVD) in order to identify the minimum

information necessary to represent the overall response of the system. It can be shown by

doing a rigorous sensitivity analysis of a system that variations in some inputs do not

www.manaraa.com

Chapter 1: Introduction

5

contribute much to the overall behavior of the system relative to other inputs. These

variables are deemed to be not as important, and by identifying them through ESM, their

place in the overall analysis can be lessened or ignored in order to focus on the more

important quantities and still capture the overall behavior of the system.

An example that illustrates the ideas behind ESM is in calculus for an integral

quantity such as distance via velocity profiles. The same distance can be obtained by

integrating different velocity profiles. Therefore, the question becomes “how can one

identify the required modeling changes associated with the different physics that will lead to

more accurate estimation of the macroscopic metrics of interest?” rather than “how can one

enhance the accuracy of the different field solutions [8]?”

1.4 Multi-scale Phenomena Modeling

The large rank reduction that can be obtained in some reactor calculations is a result

of the multi-scale phenomena modeling (MSP) strategy on which nuclear reactor calculations

are based. Besides nuclear reactor calculations, many other engineering systems involve

large variations in both time and length scales and are examples of applications of MSP. In

fact, many of today’s important engineering and physical phenomena are modeled via MSP,

e.g. weather forecast, geophysics, materials simulation [7]. To accurately model the large

time and scale variations, MSP utilizes a series of models varying in complexity and

dimensionality [7]. First, high resolution (HR) microscopic models are employed to capture

the basic physics and the short scales that govern system behavior. The HR models are then

www.manaraa.com

Chapter 1: Introduction

6

coupled with low resolution (LR) macroscopic models to directly calculate the macroscopic

system behavior, which is often of interest to system designers, operators, and

experimentalists. The coupling between the different models results in a gradual reduction in

problem dimensionality thus creating large degrees of correlations between different data in

the input and output (I/O) data streams. ESM exploits this situation by treating the I/O data

in a collective manner in search of the independent pieces of information. The term ‘Degree

of Freedom’ (DOF), adopted in many other engineering fields, is used to denote an

independent piece of information in the I/O stream. An active DOF denotes a DOF that is

transferred from a higher to a lower resolution model, and an inactive DOF denotes a DOF

that is thrown out. ESM replaces the original I/O data streams by their corresponding active

DOFs. The number of active DOFs can be related to the numerical rank of the Jacobian

matrix.

1.5 Thesis Contents

This manuscript presents a method for using OpenAD and Rapsodia to efficiently

calculate first and higher order derivatives by reducing the size of the input stream according

to the efficient subspace method (ESM). Chapter 2 of this work describes the computational

methods and theory behind AD and the application of ESM. Chapter 3 presents a

generalized description of how this approach can be applied to a computational model.

Chapter 4 presents some simple examples of using the method as well as the results of

applying this approach to MATWS, a safety code for sodium cooled fast reactors that

www.manaraa.com

Chapter 1: Introduction

7

combines the SAS4A/SASSYS computer code with a simplified representation of the reactor

heat removal system [9].

www.manaraa.com

Chapter 2: Computational Methods

8

CHAPTER 2 Computational Methods

2.1 AD Theory

The quick, easy, intuitive (but inaccurate) way to calculate derivatives is by using a

finite difference or divided difference approach. The first order derivative for a function

 is given by:

(1)

This method requires very small values of h in order to obtain useful results. Automatic (or

algorithmic) differentiation instead relies on the exact analytical expressions of the

derivatives for the basic functions () that make up the overall function in

question. The chain rule of differentiation is used in order to follow the differentiation

calculation through the basic functions of the program. Equation (2) gives the chain rule for

a function f that is a function of another function g which is a function of x. Thus, f is

ultimately a function of x itself.

 (2)

Equation (3) gives the chain rule in the case when and .

 (3)

 To show how the chain rule is used in AD, consider the following the example.

Consider the following function where :

www.manaraa.com

Chapter 2: Computational Methods

9

(4)

A computer will calculate y from and in much the same way that a human being would

go about doing it by hand. Intermediate values will be calculated for the lowest level sub-

functions (such as in this case), and then the values for these sub-functions will be

used to calculate the values for higher level functions (

). This process is continued until the overall value for the function is computed. Most

AD software packages follow this same control flow that is referred to as an evaluation trace.

An evaluation trace is basically a record of a particular run of a given program, with

particular specified values for the input variables, showing the sequence of floating point

values calculated by a (slightly idealized) processor and the operations that computed them

[1]. Table 2-1 shows an evaluation trace for Equation (4).

The intermediate mathematic variables are different from normal program

variables as they can normally not be assigned a value more than once [1]. A real computer

program that models an actual engineering system will contain functions that are much more

complex and have many more intermediates than the one given by Equation (4). To

effectively follow variables through a program, a “computational graph” is often used to give

a visual representation of an evaluation trace [1]. Figure 2.1 shows the computational graph

for the evaluation trace in Table 2-1.

www.manaraa.com

Chapter 2: Computational Methods

10

Table 2-1: Evaluation Trace for Equation (4)

 = = 2.000

 = = 1.000

 = = 2.000/1.000 = 2.000

 = = = 3.762

 = = = 0.9093

 = = = 7.389

 =

 =

 = 0.5600

 = = = 5.120

 = =

www.manaraa.com

Chapter 2: Computational Methods

11

Figure 2.1: Computation Graph of Table 2-1

www.manaraa.com

Chapter 2: Computational Methods

12

2.1.1 Forward Mode

Many AD packages feature two ways to follow the evaluation trace of the program.

The first and most basic way that an AD package can operate is by calculating the derivatives

of the inputs and following the evaluation trace to the outputs, calculating the derivatives of

each intermediate along the way. In the example presented earlier, in order to calculate

derivatives of y with respect to , each intermediate variable must be differentiated with

respect to and evaluated for the desired values of and . This will create new

intermediate derivative variables () that will be associated with each

corresponding intermediate variable. Starting with the first line in Table 2-1 it is easy to see

that and . Moving to gives the following:

Table 2-2 gives the full evaluation trace for the forward calculation of derivatives. If

derivatives with respect to are desired, the process can be repeated but instead

 and . For problems with multiple outputs, the forward mode can be

used to obtain the derivatives of each desired output variable with respect to a single input

variable in one run. This makes the forward mode more desirable to use when the number of

outputs is larger than the number of inputs.

www.manaraa.com

Chapter 2: Computational Methods

13

Table 2-2: Forward mode evaluation trace

 = = 2.000

 = = 1.000

 = = 1.000

 = = 0.000

 = = 2.000/1.000 = 2.000

 =
 = = 1.000

 = = = 3.762

 = = = 3.627

 = = = 0.9093

 = = = -0.4161

 = = = 7.389

 = = = 7.389

 =

 =

 = 0.5600

 =

 =

 = 0.2361

 = = = 5.120

 = = = 5.032

 = =

 = =

www.manaraa.com

Chapter 2: Computational Methods

14

2.1.2 Reverse Mode

In addition to the forward mode, some AD packages (including OpenAD) feature a

reverse or adjoint mode. Instead of selecting an independent variable and calculating the

derivatives of every intermediate variable with respect to that variable, a dependent variable

is chosen and the derivatives of that variable with respect to each intermediate variable are

calculated [1]. In order to perform an evaluation trace in the reverse mode, new adjoint

variables will be defined. Let

 (in a strict sense, actually is defined to be

 where

 is a new independent variable added to the right-hand side of the equation defining [1]).

The evaluation trace starts from the final steps of the normal evaluation trace and works

backwards, hence reverse mode. The desired dependent adjoint variable will be set to 1.000,

which for this case of a single output means that Table 2-3 gives the normal

evaluation trace followed by the evaluation trace for a reverse mode derivative calculation.

Note that each line in the reverse mode calculation is lined up with the corresponding line of

the model calculation above. The application of the chain rule in reverse mode can be

confusing, so as an example, consider tracing backwards through the model calculation to the

line . Here, depends on and . The adjoint variables corresponding

to this line are

 and

. Noting that

 and

evaluating the current expression for to get the other required derivatives gives

and . The next step is to follow the normal evaluation trace backwards to

www.manaraa.com

Chapter 2: Computational Methods

15

the next step,

, and repeat. For variables that appear multiple times in the trace

(such as), the previously calculated adjoint values are accumulated into the new

calculation (as is shown in the lines and).

The value

 obtained in the reverse mode trace agrees with what was

obtained in the forward trace shown in Table 2-2. Also note that

 was calculated in the

reverse mode trace with only a single extra calculation. This makes the reverse mode useful

for models where the number of inputs is greater than the number of outputs. However, the

reverse mode transformation can be difficult to implement due to the fact that the evaluation

trace must be reversible which can be an issue for some model codes.

2.1.3 Active Variables

The concept of an ‘active variable’ is important to AD. An ‘active variable’ is any

variable in the model that comes into contact via assignment to the dependent/independent

variables. For example, in a program that computes from in the following fashion:

and

 is the value desired by AD calculation, the active variables are and . The

parameters and are viewed as ‘passive variables’ as they are not assigned values that

depend on the independent variable . It will be shown in the following sections that active

www.manaraa.com

Chapter 2: Computational Methods

16

variables in OpenAD and Rapsodia require type changes from real, double precision, etc. to

a custom defined active type in order to operate.

2.2 OpenAD

OpenAD uses association by address [5], that is an active type, as the means of

augmenting the original program data to hold the derivative information. The usual activity

analysis would ordinarily trigger the re-declaration of only a subset of common block

variables. Because the access of the common block via the array enforces a uniform type for

all common block variables to maintain proper alignment, all common block variables had to

be activated. Furthermore, because the equivalence construct applied syntactically only to

the first common block variable, the implicit equivalence of all other variables cannot be

automatically deduced and required a change of the analysis logic for OpenAD to maintain

alignment by conservatively overestimating the active variable set. Superficially this may

seem a drawback of the association by address. The association by name [10], used in other

AD source transformation tools will not fare better though. Shortening the corresponding

loop for the name-associated and equivalenced derivative-carrying array is difficult for

interspersed passive data and therefore one will resort to the same alignment requirement.

2.3 Rapsodia

Rapsodia is based on operator overloading for the forward propagation of univariate

Taylor polynomials. All other operator overloading based AD tools have overloaded

www.manaraa.com

Chapter 2: Computational Methods

17

Table 2-3: Reverse mode evaluation trace

www.manaraa.com

Chapter 2: Computational Methods

18

operators that are hand-coded, operate on Taylor coefficient arrays with variable length in

loops with variable bounds to accommodate the derivative orders and numbers of directions

needed by the application. In contrast, Rapsodia generates on demand a library of

overloaded operators for a specific number of directions and a specific order. Thus, at

compile time, the loops are already represented in (partially) unrolled code along with a fixed

(partially flat) data structure that provides more freedom for compiler optimization. Because

of the overall assumption that r, the reduced input dimension, is much smaller than m the

higher order derivative computation in forward mode is feasible and appropriate.

Because overloaded operators are triggered by using a special (active) type for which

they are declared it now appears as a nice confluence of features that OpenAD for the

gradient computation already does the data augmentation via association by address, i.e. via

an active type, and therefore the assumption could be made that one merely has to change the

OpenAD active type to a Rapsodia active type to use the operator overloading library.

2.4 Efficient Subspace Method

Subspace methods are based on mathematical ideas in linear algebra. The key

components are the vector spaces that exist in matrix representations of the inputs and

outputs of a model in question. The goal of using subspace methods in relation to the method

presented here is to determine a low rank approximation of the model using information

gathered from the first order sensitivity (Jacobian) matrix. The effective rank that is desired

corresponds to the active degrees of freedom (DOF) of the model. A DOF denotes an

www.manaraa.com

Chapter 2: Computational Methods

19

independent piece of information in the input/output stream [8]. An active DOF denotes a

DOF that is transferred from a higher to a lower resolution model, and an inactive DOF

denotes one that is thrown out [8].

A very important tool used in subspace methods is the matrix decomposition.

Examples of common matrix decompositions are the QR factorization and singular value

decomposition (SVD). For an Jacobian matrix with rank , the SVD

is given by:

 (5)

where and are full column rank orthonormal matrices that constitute

orthonormal bases for the vector spaces and , respectively. is a nonsingular

diagonal matrix whose elements correspond to the singular values (usually organized from

largest to smallest) of .

 The SVD is a so called ‘rank revealing’ decomposition because the number of non-

zero singular values correspond to the numerical rank of the original matrix. In practice, all

singular values will be non-zero, but the SVD still allows for the ‘effective’ rank to be

determined. Only the largest singular values will count towards the effective rank. The

cutoff criterion that determines which singular values count towards the effective rank can

vary depending on the desired accuracy.

www.manaraa.com

Chapter 2: Computational Methods

20

 By determining an effective rank of a matrix which is lower than , a low

rank approximation can be constructed. After determining the effective rank by inspection of

the SVD or by using the rank finding algorithm that will be introduced in the next section, a

number of vectors corresponding to the size of the active subspace can be used in

constructing a low rank approximation.

2.5 General Methodology

To start, a simple example of constructing a low rank approximation to a matrix

operator will be considered. Let the matrix in question in be . The elements of

are not known, but the ability to perform matrix vector products with and is available.

The steps involved in determining a low rank approximation of are as follows:

1. Use k random Gaussian input vectors to compute k matrix vector products:

2. Perform a QR decomposition on the responses:

3. Determine the effective rank r using the Rank Finding Algorithm (RFA):

a. Choose a small integer k

b. Choose a sequence of k random Gaussian vectors
1

k

i i
w

c. Calculate ()T

i y y iy x I Q Q A for all i where Q is the n r matrix identified

in the steps above.

www.manaraa.com

Chapter 2: Computational Methods

21

4. If r k , continue. Otherwise, add more matrix vector products in step 1 and repeat

steps 2 and 3

5. Calculate T

i ip q A for all i

6. Using the and i ip q vectors, a low rank approximation of the form TA USV can

be calculated as shown in the appendix of [9].

It has been shown in other works [12] that the effective rank r can be determined with at

least probability when Q satisfies the following criterion:

 (6)

where is the user specified error allowance. In real applications, these ideas can be applied

by replacing the matrix operator with a computational model. Let the computational model

of interest be described by a vector valued function:

where and . The goal of this methodology is to compute the entire set of

derivatives for a given order by reducing the dimensions of the problem and thus reducing

the computational and storage requirements. First, the case where 1m , i.e. a single-

valued model, will be considered. A general function can be expanded around a

www.manaraa.com

Chapter 2: Computational Methods

22

reference point as follows (without loss of generality, assume that and

in order to simplify the representation):

 (7)

where
 can be any kind of scalar functions. The outer summation over the variable k

goes from 1 to infinity. Each term represents one order of variation, e.g. 1k represents

the first order term; 2k , the second order terms. For the case of , the thk term

reduces to the thk term in a multi-variable Taylor series expansion. The inside summation

for the thk term consists of k single valued functions
 that are multiplying each other.

The arguments for the
 functions are scalar quantities representing the inner products

between the vector and n vectors

 which span the parameters space. The

superscript ()k implies that a different basis is used for each of the k-terms, i.e. one basis is

used for the first-order term, another for the second-order term and so on.

Any input parameter variations that are orthogonal to the range formed by the

collection of the

 vectors will not produce changes in the output response, i.e. the

value of the derivative of the function will not change. If the

 vectors span a subspace

of dimension r as opposed to n, then effective number of input parameters can be reduced

www.manaraa.com

Chapter 2: Computational Methods

23

from n to r. The mathematical range can be determined by using only the first-order

derivatives.

Differentiating Eq. (7) with respect to x gives:

(8)

where

l l

k T k

l j jx is the derivative of the term
l

k T

l j x . Eq. (3) can be reinterpreted

to show that the gradient of the function is a linear combination of the
{ }

l

k

j vectors:

(9)

where

 (10)

In a typical application, the B matrix will not be known beforehand. It is only necessary to

know the rank r of B which can be accomplished using the rank finding algorithm (RFA).

www.manaraa.com

Chapter 2: Computational Methods

24

After determining the effective rank, it can be seen that the function only depends on r

effective dimensions and can be reduced to simplify the calculation. The reduced model only

requires the use of the subspace that represents the range of B, of which there are infinite

possible bases.

This concept will now be expanded to a multi-response model. The
thq response of

the model and its derivative are given by:

(11)

(12)

The active subspace of the overall model must contain the contributions of each individual

response. The matrix B will contain the

 vectors for all orders and responses. To

determine a low rank approximation, a pseudo response will be defined as a

linear combination of the m responses:

www.manaraa.com

Chapter 2: Computational Methods

25

(13)

where
q are randomly selected scalar factors. The gradient of the pseudo response is:

(14)

Calculating derivatives of the pseudo response as opposed to each individual response

provides the necessary derivative information while saving considerable computational time

for large models with many inputs and outputs.

www.manaraa.com

Chapter 3: Implementation

26

CHAPTER 3 Implementation

3.1 Implementation on a General FORTAN Code

The computational model that is executed in the computer code of interest will be

assumed to be of the following form:

 (15)

where y is an 1m vector whose components correspond to the m outputs of interest, x is an

1n vector whose components correspond to the n inputs of interest, and corresponds to

the unknown operator acting on the inputs to produce output. No previous information of

is needed; only the ability to obtain y from x is necessary for this method to work. The next

step is to define the pseudo response y :

 (16)

where iy are the individual components of the response vector y. This will be done with an

invasive definition in the computer code, preferably in the highest level routine. Once the

pseudo response has been defined, the reverse mode of OpenAD will be utilized to obtain

derivatives of the pseudo response with respect to each input variable. Once an executable

www.manaraa.com

Chapter 3: Implementation

27

form of the code is created to calculate the 1n vector

, the active subspace of the model

will be found by generating a set of derivative vectors, which span the union of all single-

responses active subspace. The code will be run using a random set of inputs, .

The responses will then be collected into the columns of an n k matrix G:

 (17)

Now, the effective rank of G will be found via the Rank Finding Algorithm (RFA).

 (18)

where the sub-matrix contains only the first r columns of . The rank is selected

in the RFA to satisfy a user defined error metric such that

 (19)

where is the norm. The columns of the matrix will be used to define the pseudo

inputs that will be coded into a version of the code that will be used with Rapsodia to

calculate derivatives of the output responses with respect to the pseudo inputs of a desired

order. The pseudo inputs are defined as:

 (20)

www.manaraa.com

Chapter 3: Implementation

28

In order to satisfy the logical order of derivative calculation by means of the chain rule of

differentiation
dy dy dx

dx dx dx

, x will be defined in the code in terms of x and the columns of

 :

 (21)

This line is what must be inserted into the code, preferably in the top level routine. Now

Rapsodia will be used to create an executable version of the code that calculates
1

()

()()

1...
n

O

oo

n

d y

dx dx

where O is the desired derivative order and 1 ... no o O . For first order calculations, the

full derivatives can be recovered utilizing the following relation that comes from the chain

rule of differentiation:

 (22)

The following matrix operation can also be used:
 where is the matrix of derivatives

with respect to the pseudo variables. From Eq.(20), it can easily be determined that

 . For orders greater than 1, the mixed derivatives play a part in the reconstruction. The

following equation shows how the second order derivatives are reconstructed on an element

by element basis for a non-mixed derivative:

www.manaraa.com

Chapter 3: Implementation

29

 (23)

The following matrix operation can also be used:
 where is the matrix of

second order derivatives of response i with respect to the pseudo variables. For example, the

second derivative of output i = 1 with respect to input j = 1 in a problem with an effective

rank of r = 2 would be recovered by

2 2 22
2 21 1 1

11 11 12 122 2 2

1 1 1 2 2

1
2

d y d y d yd y
q q q q

dx dx dx dx dx
 . Mixed

derivatives would be recovered by:

2 2

,

i i
jk gl

k lj g k l

d y d y
q q

dx dx dx dx
 (20)

In the same case as before (r = 2),
2 2 2 2

1 1 1 1
11 12 11 22 12 21 12 222 2

1 1 1 1 2 2

d y d y d y d y
q q q q q q q q

dx dx dx dx dx dx
 .

It can be inferred that for derivatives of order O, the non mixed derivatives can be recovered

using the following expression:

() ()

()
, ,... ...

O O

i i
jk jl jzO

k l oj k l z

d y d y
q q q

dx dx dx dx
 (21)

www.manaraa.com

Chapter 3: Implementation

30

where the total number of different indices k, l,..z is O and each index runs from 0 to n . The

mixed derivatives are:

() ()

, ...

...
... ...

O O

i i
jk gz

k l oj g k z

d y d y
q q

dx dx dx dx
 (22)

The algorithm detailed in this section can be summarized as follows:

1. Define the pseudo responses in the top level routine (Eq. 11)

2. Compile an executable using OpenAD to compute
dy

dx

3. Run the
dy

dx
 calculation k times and assemble the output into a matrix G (Eq. [12])

4. Determine the effective rank r using the RFA

5. Calculate a QR decomposition of G and keep the first r columns of Q in rQ (Eq.

[15])

6. Define the inputs in terms of the pseudo inputs and rQ in the top level routine (Eq.

[17])

7. Reconstruct the full derivatives (Eq.[18])

The steps in the RFA are:

www.manaraa.com

Chapter 3: Implementation

31

1. Calcuate the SVD of G: TG USV

2. Set the smallest singular value to 0 and keep the remaining r singular values: 0p

3. Calculate an approximation of G: T

rG US V

Repeat steps 2 and 3 until
|| ||

|| ||

G G

G
 is no longer satisfied

www.manaraa.com

Chapter 4: Examples and Test Cases

32

CHAPTER 4 Examples and Test Cases

4.1 Two-minute AD Examples

To quickly introduce the two AD tools used in this method, ‘Two-minute’ examples

will be shown to illustrate the basics of how to use each tool on a subroutine containing an

easily differentiated function. The examples follow the basic style given in the examples

used in the OpenAD/F Manual [10] and Rapsodia Manual [5]. The manuals should be

consulted for a more in depth presentation of the inner workings of each tool.

4.1.1 OpenAD/F Example

A simple subroutine will be used to illustrate the calculation of derivatives using

OpenAD. Figure 4.1 shows the subroutine that will be used in this example. The function

that the subroutine models consists of two outputs (y) and three inputs (x). The parameters

a, and b are simply scalar factors used in the calculation. The only additions to this code that

are required by OpenAD are the tags identifying the independent (!$openad INDEPENDENT(x))

and dependent variables (!$openad DEPENDENT(y)). The goal is to calculate the derivatives of

each output with respect to each input. A main program called driver will be used with

subroutine head in order to extract the derivatives. Figure 4.2 shows the main program

driver.

www.manaraa.com

Chapter 4: Examples and Test Cases

33

Figure 4.1: Simple subroutine for ‘Two-minute’ forward OpenAD example

Figure 4.2: Main program used in the ‘Two-minute’ forward OpenAD example

program driver

 use OAD_active

 implicit none

 external head

 type(active) :: x(3), y(2)

 x(1)%v=1.0D0

 x(2)%v=2.0D0

 x(3)%v=3.0D0

 x(1)%d=1.0D0

 x(2)%d=0.0D0

 x(3)%d=0.0D0

 call head(x,y)

 print *, 'driver running for x =',x%v

 print *, ' yields y =',y%v,' dy/dx =',y%d

 x(1)%d=0.0D0

 x(2)%d=1.0D0

 x(3)%d=0.0D0

 call head(x,y)

 print *, 'driver running for x =',x%v

 print *, ' yields y =',y%v,' dy/dx =',y%d

 x(1)%d=0.0D0

 x(2)%d=0.0D0

 x(3)%d=1.0D0

 call head(x,y)

 print *, 'driver running for x =',x%v

 print *, ' yields y =',y%v,' dy/dx =',y%d

end program driver

subroutine head(x,y)

 double precision, dimension(3) :: x

 double precision, dimension(2) :: y

 double precision :: a,b

 a=2.0d0

 b=3.0d0

!$openad INDEPENDENT(x)

 y(1)=a*x(1)**2+sin(b*x(2))

 y(2)=log(a*x(1))+cos(b*x(2))+1/x(3)

!$openad DEPENDENT(y)

end subroutine

www.manaraa.com

Chapter 4: Examples and Test Cases

34

 The active type declaration shown in line 5 must be used in this top level routine for

the active variables. The active type will give each active variable two parts, a normal value

(indicated by %v) and a derivative part (%d). Lines 6, 7 and 8 initialized the value parts of

x. Before the subroutine is called, one input will be chosen for derivative calculation. This

variable’s derivative part will be ‘seeded’ with a value of 1 while all others are assigned 0.

For the first call of head, this can be viewed as starting with

 and

as is shown in Table 2-2: Forward mode evaluation trace. For subsequent calls of head, the

seed will change to the other inputs. The basic call to invoke the OpenAD tool for a forward

transformation is openad –m f [file name] which will create a new transformed

file. After transforming and compiling all the necessary files for the example given above,

the following output given in Figure 4.3: Output for the ‘Two-minute’ forward OpenAD

example is returned.

The forward mode allows for the calculation of derivatives of each output with

respect to one input at a time. As a quick check, the first set of derivative values given are

 and

. The derivatives evaluated for can easily be found analytically:

 and

 .

An example that requires more precision is

 When the analytically derived

expression is evaluated in Matlab for , the first 14 digits match exactly.

The Makefile shown in Figure 4.4: Makefile contents for compiling and linking

the ‘Two-minute’ forward OpenAD example contains all the steps for transforming and

www.manaraa.com

Chapter 4: Examples and Test Cases

35

Figure 4.3: Output for the ‘Two-minute’ forward OpenAD example

Figure 4.4: Makefile contents for compiling and linking the ‘Two-minute’ forward

OpenAD example

ifndef F90C

F90C=ifort

endif

RTSUPP=w2f__types OAD_active

driver: $(addsuffix .o, $(RTSUPP)) driver.o head.prepped.pre.xb.x2w.w2f.post.o

 ${F90C} -o $@ $^

head.prepped.pre.xb.x2w.w2f.post.f90 $(addsuffix .f90, $(RTSUPP)) : toolChain

toolChain : head.prepped.f90

 openad -c -m f $<

%.o : %.f90

 ${F90C} -o $@ -c $<

clean:

 rm -f ad_template* OAD_* w2f__* iaddr*

 rm -f head.prepped.pre* *.B *.xaif *.o *.mod driver driverE *~

.PHONY: clean toolChain

the following include has explicit rules that could replace the openad script

include MakeExplRules.inc

driver running for x = 1.00000000000000 2.00000000000000 3.00000000000000

 yields y = 1.72058450180107 1.98665080054364

 dy/dx = 4.00000000000000 1.00000000000000

driver running for x = 1.00000000000000 2.00000000000000 3.00000000000000

 yields y = 1.72058450180107 1.98665080054364

 dy/dx = 2.88051085995110 0.838246494596778

driver running for x = 1.00000000000000 2.00000000000000 3.00000000000000

 yields y = 1.72058450180107 1.98665080054364

 dy/dx = 0.000000000000000E+000 -0.111111111111111

www.manaraa.com

Chapter 4: Examples and Test Cases

36

compiling all the necessary files for the example shown above. After running the

Makefile, an executable named ‘driver’ is created. The Fortran compiler used is ifort.

 To operate in the reverse mode, the prepped subroutine does not require changes.

The main program driver will require some slight modifications. Figure 4.5 contains the

reverse mode driver.

The main difference between the forward and reverse mode main programs is that the

seeding is done with the outputs in the reverse mode. The derivatives of one output with

respect to all inputs are calculated at once in the reverse mode. The reverse mode flag must

be used when executing the OpenAD tool (openad –m rj [file name]). Figure 4.6

gives the output for the reverse mode example.

 The outputs exactly match those given by the forward mode. When using OpenAD

on more complex codes, the same basic methods presented in these examples are used.

4.1.2 Rapsodia Example

Rapsodia will now be used to calculate first, second, and third order derivatives of the

function in the subroutine from the previous example. The subroutine itself does not require

many changes. Rapsodia does not require the tags that OpenAD used, but the active

variables must be changed to the Rapsodia active type in both the subroutine and main

program. The Rapsodia prepped subroutine is shown in Figure 4.7.

www.manaraa.com

Chapter 4: Examples and Test Cases

37

Figure 4.5: Example reverse mode main program

Figure 4.6: Reverse mode example output

Figure 4.7: Rapsodia prepped subroutine for the ‘Two-minute’ example

subroutine head(x,y)

 INCLUDE 'RAinclude.i90'

 TYPE(RARealD) :: x(3),y(2)

 double precision :: a,b

 a=2.0d0

 b=3.0d0

 y(1)=a*x(1)**2+sin(b*x(2))

 y(2)=log(a*x(1))+cos(b*x(2))+1/x(3)

end subroutine

driver running for x = 1.00000000000000 2.00000000000000 3.00000000000000

 yields y = 1.72058450180107 1.98665080054364

 dy/dx = 4.00000000000000 2.88051085995110 0.000000000000000E+000

driver running for x = 1.00000000000000 2.00000000000000 3.00000000000000

 yields y = 1.72058450180107 1.98665080054364

 dy/dx = 1.00000000000000 0.838246494596778 -0.111111111111111

program driver

 use OAD_active

 use OAD_rev

 implicit none

 external head

 type(active) :: x(3), y(2)

 x(1)%v=1.0D0

 x(2)%v=2.0D0

 x(3)%v=3.0D0

 y(1)%d=1.0D0

 y(2)%d=0.0D0

 our_rev_mode%tape=.TRUE.

 call head(x,y)

 print *, 'driver running for x =',x%v

 print *, ' yields y =',y%v,' dy/dx =',x%d

 y(1)%d=0.0D0

 y(2)%d=1.0D0

 our_rev_mode%tape=.TRUE.

 call head(x,y)

 print *, 'driver running for x =',x%v

 print *, ' yields y =',y%v,' dy/dx =',x%d

end program driver

www.manaraa.com

Chapter 4: Examples and Test Cases

38

 The main program logic that is required for running Rapsodia on this subroutine is

more involved than OpenAD, but it can mostly be reused easily for any general subroutine or

program. Figure 4.8 gives the complete main program that was used to run the Rapsodia

example.

 Lines 2-9 contain the Rapsodia specific variable declarations. These variables are

initialized in lines 17-23 by calling Rapsodia specific routines that are generated and must be

compiled with the program. The desired independent variables are set in the loops of lines

31-35 with the call to RAset. The derivatives are extracted and output in lines 45-58, which

are looped over for each output. The call to RAget sets the dependent variables. A

Makefile is shown in Figure 4.9 which contains the instructions for generating the

necessary files from the Rapsodia library and linking them to the subroutine and main

program. The line ${RAPSODIAROOT}/Generator/generate.py -d 3 -o 1 -f $(GEN_DIR) must

be set with the appropriate number of directions (d) and derivative order (o). For first order

derivatives of this example, the values are 3 and 1, respectively. Again, an executable named

‘driver’ is created to run the program.

Figure 4.10 through Figure 4.12 contain the results for first through third order

derivatives. The only changes required to obtain a different order of derivatives are

rebuilding the program after changing the order number in the main program and Makefile

and changing the number of directions in the Makefile. The results are printed with the

appropriate multi-index of the derivative order. For example, [1][2][0] corresponds to a

www.manaraa.com

Chapter 4: Examples and Test Cases

39

Figure 4.8: Main program for the ‘Two-minute’ Rapsodia example

PROGRAM DRIVER

 INCLUDE 'RAinclude.i90'

 USE higherOrderTensorUtil

 IMPLICIT NONE

 INTEGER :: O, DIRS, max_order

 TYPE(higherOrderTensor) :: T

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: SeedMatrix

 REAL(KIND=RAdKind), DIMENSION(:,:), ALLOCATABLE :: TaylorCoefficients

 REAL(KIND=RAdKind), DIMENSION(:), ALLOCATABLE :: CompressedTensor

 TYPE(RARealD) :: x(3),y(2)

 integer :: j,k,i,n

 n=3

 O=3

 CALL setNumberOfIndependents(T, n)

 CALL setHighestDerivativeDegree(T, O)

 DIRS = getDirectionCount(T)

 ALLOCATE(SeedMatrix(n, DIRS))

 CALL getSeedMatrix(T, SeedMatrix)

 ALLOCATE(TaylorCoefficients(O, DIRS))

 ALLOCATE(CompressedTensor(DIRS))

 WRITE (*,'(A,I3.1)') 'Number of directions = ', DIRS

 x(1)=1.0D0

 x(2)=2.0D0

 x(3)=3.0D0

 DO j=1,n

 DO i = 1, DIRS

 CALL RAset(x(j), i, 1, REAL(SeedMatrix(j, i), KIND=RAdKind))

 END DO

 END DO

 CALL head(x,y)

 DO i=1,2

 WRITE(*,*) 'y(',i,') = ', y(i)%v

 END DO

 DO k=1,2

 DO i = 1, O

 DO j = 1, DIRS

 CALL RAget(y(k), j, i, TaylorCoefficients(i, j))

 END DO

 END DO

 CALL setTaylorCoefficients(T, TaylorCoefficients)

 CALL getCompressedTensor(T, O, CompressedTensor)

 DO i = DIRS, 1,-1

 WRITE (*,'(A)',ADVANCE='NO') 'Y'

 DO j = 1, n

 WRITE (*,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']'

 END DO

 WRITE (*,'(A,E25.17E3)') ' = ', CompressedTensor(i)

 END DO

 END DO

 DEALLOCATE(CompressedTensor)

 DEALLOCATE(TaylorCoefficients)

 DEALLOCATE(SeedMatrix)

END PROGRAM DRIVER

www.manaraa.com

Chapter 4: Examples and Test Cases

40

Figure 4.9: Makefile contents for compiling and linking the ‘Two-minute’ Rapsodia

example (first order)

ifndef RAPSODIAROOT

 $(error "environment variable RAPSODIAROOT undefined")

endif

include ${RAPSODIAROOT}/Makefile.inc

default: driver

 ./$^

GEN_DIR=RALib

RA_EXTRAS=${RAPSODIAROOT}/hotF90

IPATH+=-I$(GEN_DIR) $(MODSEARCHFLAG)$(GEN_DIR) $(MODSEARCHFLAG)$(RA_EXTRAS)

OBJS= \

$(addprefix $(RA_EXTRAS)/, $(addsuffix .o,$(HOTF90NAMES))) \

driver.o

driver: sources $(OBJS)

 $(F90C) $(FFLAGS) $(IPATH) -o $@ $(OBJS) $(GEN_DIR)/libRapsodia.a

sources : FORCE

 ${RAPSODIAROOT}/Generator/generate.py -d 3 -o 1 -f $(GEN_DIR)

 cd $(GEN_DIR) && $(MAKE)

FORCE:

clean:

 rm -rf $(GEN_DIR) *.o *.mod driver driver.out

.PHONY: default sources clean

www.manaraa.com

Chapter 4: Examples and Test Cases

41

derivative that is first order in and second order in .

Like the OpenAD example, these same basic steps are used in the examples and test

cases that follow.

4.2 Matrix-Vector Product Example

This example will now implement the reduction method on a pre-constructed low

rank matrix operator. To start, consider a random matrix . The matrix will be

modified so that it is rank deficient by zeroing singular values. To visualize a rank

deficient matrix, consider a 2D plane in a 3D space. Consider different vectors that live

inside the plane. Since the plane is 2 dimensional, any vector inside it can be expressed as a

linear combination of two vectors only (any two independent vectors that live inside the

plane). In this case the matrix would have rank equal to 2 only and not . In order to

reduce this problem, one needs to find any two vectors that live in that plane. The simplest

way to do this is to run the reverse mode twice, once for

 and once for

.

However, this does not guarantee that

 and

 are linearly independent vectors.

To get around that, a new ‘pseudo’ response will be defined. Let
 .

The new variables are simply weighted (the weights can be picked randomly) sums of the

original responses. Now differentiating the pseudo response gives:

www.manaraa.com

Chapter 4: Examples and Test Cases

42

Figure 4.10: Rapsodia example first order results

Figure 4.11: Rapsodia example second order results

Number of directions = 6

 y(1) = 1.7205845018010741

 y(2) = 1.9866508005436445

Y[2][0][0] = 0.40000000000000000E+001

Y[1][1][0] = 0.00000000000000000E+000

Y[1][0][1] = 0.00000000000000000E+000

Y[0][2][0] = 0.25147394837903327E+001

Y[0][1][1] = 0.00000000000000000E+000

Y[0][0][2] = 0.00000000000000000E+000

Y[2][0][0] = -0.10000000000000000E+001

Y[1][1][0] = 0.00000000000000000E+000

Y[1][0][1] = 0.00000000000000000E+000

Y[0][2][0] = -0.86415325798532940E+001

Y[0][1][1] = 0.00000000000000000E+000

Y[0][0][2] = 0.74074074074074070E-001

Number of directions = 3

 y(1) = 1.7205845018010741

 y(2) = 1.9866508005436445

Y[1][0][0] = 0.40000000000000000E+001

Y[0][1][0] = 0.28805108599510980E+001

Y[0][0][1] = 0.00000000000000000E+000

Y[1][0][0] = 0.10000000000000000E+001

Y[0][1][0] = 0.83824649459677758E+000

Y[0][0][1] = -0.11111111111111110E+000

www.manaraa.com

Chapter 4: Examples and Test Cases

43

Figure 4.12: Rapsodia example third order results

Number of directions = 10

 y(1) = 1.7205845018010741

 y(2) = 1.9866508005436445

Y[3][0][0] = 0.00000000000000000E+000

Y[2][1][0] = 0.46678715293069217E-006

Y[2][0][1] = 0.00000000000000000E+000

Y[1][2][0] = 0.37342972254439388E-005

Y[1][1][1] = 0.46678715304171448E-006

Y[1][0][2] = 0.00000000000000000E+000

Y[0][3][0] = -0.25924587937029660E+002

Y[0][2][1] = 0.37342972269982511E-005

Y[0][1][2] = 0.46678715293069217E-006

Y[0][0][3] = 0.00000000000000000E+000

Y[3][0][0] = 0.19999992437660694E+001

Y[2][1][0] = -0.15225116500872105E-006

Y[2][0][1] = -0.28675537055988798E-006

Y[1][2][0] = 0.10506924744690949E-005

Y[1][1][1] = 0.10116055770836851E-006

Y[1][0][2] = -0.25341172271708956E-007

Y[0][3][0] = -0.75442155987740112E+001

Y[0][2][1] = 0.10880373606525495E-005

Y[0][1][2] = 0.14650791824166731E-006

Y[0][0][3] = -0.74074046065409974E-001

www.manaraa.com

Chapter 4: Examples and Test Cases

44

 (24)

Equation (24) is simply a random sum of the rows of the matrix . If the weights are

selected randomly, there is a high probability that

 and

 will be independent.

This approach can be generalized for a matrix with rank . Let the model be

described by . For now assume that the matrix is random and constructed to be rank

deficient with known rank . A pseudo response will be constructed as shown

above. Using reverse mode OpenAD, sets of derivatives of the pseudo response will be

taken. Figure 4.13 shows the code for a matrix vector product with the pseudo response

definition.

The collection of derivatives that are obtained,

 , are now

used to define pseudo inputs of the form . In order to keep the logical progression of

variables for the OpenAD evaluation trace in the code, will be defined in terms of :

 . Forward mode OpenAD will then be used to obtain

 Figure

4.14 shows the code for a matrix vector product with the pseudo input definition.

The full derivatives

 (which in this case are the same as the matrix) can be recovered by

multiplying the reverse results by the forward results:

 .

www.manaraa.com

Chapter 4: Examples and Test Cases

45

Figure 4.13: Matrix-vector product code with pseudo response definition

Figure 4.14: Matrix-vector product code with pseudo input definition

!$openad INDEPENDENT(x_pseudo)

 do j=1,r

 do i=1,n

 x(i)=x(i)+x_pseudo(j)*J_pseudo(i,j)

 end do

 end do

do i=1,m

 do j=1,n

 y(i)=y(i)+A(i,j)*x(j)

 end do

 end do

!$openad DEPENDENT(y)

!$openad INDEPENDENT(x)

 do i=1,m

 do j=1,n

 y(i)=y(i)+A(i,j)*x(j)

 end do

 end do

 do j=1,r

 do i=1,m

 y_pseudo(j)=y_pseudo(j)+y(i)*gamma(i,j)

 end do

 end do

!$openad DEPENDENT(y_pseudo)

www.manaraa.com

Chapter 4: Examples and Test Cases

46

 In realistic problems, the rank will not be absolute, i.e. all singular values will be

non-zero, but the magnitudes of the singular values will be distributed such that an effective

rank can be determined. Another random rank deficient matrix will be used to demonstrate

how the rank finding algorithm works. A random matrix with the singular value

distribution shown in Figure 4.15 will be considered for this example.

The singular value distribution shows that of the 500 singular values, only about 60

actually contribute significantly. A safe estimate of the effective rank would be 100.

Obtaining the unreduced derivatives will yield the original matrix. By doing an SVD on this

output and taking the first 50 columns of the matrix, , pseudo inputs can be defined as

shown above. The output of the derivatives of the responses with respect to the

pseudo inputs will be multiplied by to obtain the reduced approximation of Using an

effective rank of 100 yields a maximum matrix element relative error of 0.130%.

To advance the demonstration of this method further towards actual engineering

codes, the next examples will demonstrate when the rank must be determined by means of

sampling the derivatives and using the rank finding algorithm.

www.manaraa.com

Chapter 4: Examples and Test Cases

47

Figure 4.15: Singular value distribution for the matrix-vector product example

www.manaraa.com

Chapter 4: Examples and Test Cases

48

4.3 Scalar-valued Model Example

First, a scalar valued function will be considered. The model that will be considered

is:

 (25)

where x, a, b, c, and d are 1n vectors, making y a scalar valued function. A simple

subroutine named 'head' was written to calculate this model along with a simple main

program called a 'driver' that calls the subroutine and is used to extract the derivatives. In

order to prepare the code for use with OpenAD, tags must be inserted to identify the

independent and dependent variables (typically formal parameters of ‘head’) to the code

analysis. Within ‘driver’ the corresponding inputs and outputs, passed as actual parameters

to ‘head’, have to be declared with the OpenAD active type to carry the derivative values.

After the code is prepared in this fashion for use with OpenAD, it generates a transformed

version of 'head', which then is compiled together with ‘driver’ and calculates the first order

derivatives of y with respect to the vector x.

A Python script was written to execute the subspace identification algorithm with the

compiled executable code. The script takes a guess k for the effective rank and runs the code

for k random input vectors x. Within the Python script, the responses are collected into a

matrix of dimension n k . is then QR factorized and the first r columns of are used

to evaluate if the error criterion is met. Additional samples of the derivatives are used also to

www.manaraa.com

Chapter 4: Examples and Test Cases

49

evaluate the error. If the error criterion is met, the first r columns of are written to a file to

be used as input for the higher-order derivative computation with Rapsodia. Figure 4.16

shows the Python script used with this model. For the model above with n = 50 and random

input vectors with 8 digits of precision for a, b, c, and d with an error criterion of 610 ,

the effective rank was found to be r = 3.

A process similar to the one for OpenAD is used to prepare the program for use with

Rapsodia. The active variables are identified via a similar manual type change in the 'driver'

and the source transformation capabilities of OpenAD can be used to perform the type

change in the ‘head’ subroutine. Because of the additional steps to determine the

propagation directions and compute the derivative tensors, the logic in the 'driver' has

additional steps for Rapsodia, but they follow a simple recipe and can be transferred between

such driver programs with relative ease. For efficiency, the number of directions that the

derivatives are calculated for along with the desired derivative order must be provided to the

library generator implemented by Rapsodia. Once the library is generated, the type-changed

‘head’, the ‘driver’, and the library can be compiled and linked. For first order calculations,

the number of directions is simply the number of input variables for which derivatives are

calculated. Once the derivatives

 are calculated, the full derivatives can be reconstructed

by multiplying the Rapsodia results by the matrix used as input. Using an effective rank

of , the reconstructed derivatives were found to have relative errors on the order of

1310 compared to results obtained from an unreduced Rapsodia calculation.

www.manaraa.com

Chapter 4: Examples and Test Cases

50

Figure 4.16: Python script used for the scalar-valued model example

while (z>e):

 while (i<k):

 #run the forward driver

 status,output=commands.getstatusoutput('./driver ' + str(n))

 print status

 #input to G from output of driver

 G[:,i]=numpy.genfromtxt('der_out.txt')

 j=0

 while (j<n):

 In[j,5]=10*random.random()

 j=j+1

 numpy.savetxt('Rinput.in.txt',In)

 i=i+1

 #calculate QR of G

 Q,R=linalg.qr(G)

 Qr=Q[:,0:k]

 #generate additional samples for error testing

 Gadd=numpy.zeros((n,k))

 p=0

 while (p<k):

 j=0

 while (j<n):

 In[j,5]=10*random.random()

 j=j+1

 numpy.savetxt('Rinput.in.txt',In)

 #run the forward driver

 status,output=commands.getstatusoutput('./driver ' + str(n))

 print status

 #input to Gadd from output of driver

 Gadd[:,p]=numpy.genfromtxt('der_out.txt')

 p=p+1

 z=linalg.norm(dot(numpy.eye(n)-dot(Qr,Qr.T),Gadd))

 print z

 k=k+1

 Gnew=numpy.zeros((n,k))

 Gnew[:,0:k-1]=G

 numpy.savetxt('Gnew',Gnew)

 G=numpy.zeros((n,k))

 G=Gnew

 numpy.savetxt('G',G)

#output Q to file for input

numpy.savetxt('Q.in.txt',Qr)

www.manaraa.com

Chapter 4: Examples and Test Cases

51

Using Rapsodia to calculate second order derivatives simply involves changing the

derivative order (o = 2) and the number of directions (d = 6) to regenerate the library and

recompiling the code. The output can then be constructed into a matrix of size r r and

the full derivatives can be recovered by:
 which results in an n n symmetric matrix.

When the second order derivatives are calculated for the example above, there are only 6

directions required for an effective rank of 3 as opposed to 1275 directions for the full

problem. The relative errors of the reduced derivatives are on the order of 1210 .

Third order derivatives were also calculated using this example. The unreduced

problem would require 22,100 directions while the reduced problem only requires 10.

Relative errors were much higher for this case but still at a reasonable order of 610 . The

relative errors for each derivative order are summarized in Table 4-1. The maximum

unreduced relative error is the maximum relative error between the unreduced Rapsodia

calculations and analytical results. The average unreduced relative errors are on the order of

 . Note that for the third order calculations, not all values for the unreduced case were

calculated due to the difficulty of obtaining all values at once. The full codes for this

example are given in Appendix A.

www.manaraa.com

Chapter 4: Examples and Test Cases

52

Table 4-1: Results for the scalar-valued model example

Derivative
Order

Unreduced
Directions

Reduced
Directions

Reduced
Relative
Error

Maximum
Unreduced

Relative Error

1 50 3 10
-13

 1.49%
2 1275 6 10

-12
 4.21%

3 22,100 10 10
-6

 2.24%

www.manaraa.com

Chapter 4: Examples and Test Cases

53

4.4 Vector-valued Model Example

It is important to note here that in practice the derivatives are employed to construct a

surrogate model that approximates the original function. Therefore, it is much more

instructive to talk about the accuracy of the surrogate model employed rather than the

accuracy of each derivative. This is illustrated in the MATWS test case by using an

engineering model.

Problems with multiple outputs require a slightly different approach when

determining the subspace. The following example will be considered:

 (26)

In the OpenAD version of the subroutine, the responses will be combined into a pseudo

response defined by the following:

 (27)

where are randomly generated factors that are unique for each execution of the code. The

derivatives that OpenAD will calculate are

, which is an 1n vector. Following the same

procedure for the single output case, the subspace identification script was run for n = 50 and

610 . The effective rank was found to be r = 5.

www.manaraa.com

Chapter 4: Examples and Test Cases

54

The Rapsodia version of the code is executed in essentially the same manner with a

loop over each output. The first, second, and third order derivatives were recovered for this

example with errors that were of the same magnitudes as the single output case. For first

order derivatives, the number of directions required in the unreduced problem is 50 for each

output, making the total number of derivatives 250. The reduced case only requires 5

derivatives for each output, 25 in total. The total number of derivatives for the unreduced

second and third order calculations were 6,375 and 110,500, respectively, compared to 15

and 35 for the reduced problem. The errors were on the same order as the scalar-valued

model test case. The results are shown in Table 4-2.

www.manaraa.com

Chapter 4: Examples and Test Cases

55

Table 4-2: Results for the vector-valued model example

Derivative
Order

Unreduced
Directions

Reduced
Directions

Reduced
Relative
Error

1 50 5 10
-13

2 1275 15 10

-12

3 22,100 35 10
-6

www.manaraa.com

Chapter 4: Examples and Test Cases

56

4.5 Important Directions

The next two examples will highlight some unique features of using this method for

derivative calculations. First, the property of derivatives not changing for inputs that are

orthogonal to the model subspace will be shown in an example. In order to visualize this

concept, consider two three-dimensional vectors and that are the basis for a model

subspace, shown in Figure 4.17. Derivatives are then calculated with a vector as input. It

can be shown that the derivatives are the same when calculated using a vector that is a

projection of onto the plane spanned by and . This means that the components of

that are perpendicular to the plane spanned by and do not factor into the derivative

calculation and can be removed as is done with the reduction techniques employed in the

previous example problems.

A larger example will now be run to verify that these ideas hold true for a general

problem space. The following function using 100 inputs and five vectors as the basis for the

problem subspace.

 (28)

Using Matlab, a, b, c, , e and w where created to be random single

precision vectors with used as the input vector for the initial derivative calculation using

OpenAD. A vector p was then calculated as a projection of w onto the space spanned by a, b,

www.manaraa.com

Chapter 4: Examples and Test Cases

57

Figure 4.17: Vector projection onto a plane

www.manaraa.com

Chapter 4: Examples and Test Cases

58

c, , and e and used as a second input vector. The resulting derivative values were on the

orders of and with the maximum absolute difference between the two sets of

derivatives being . As expected, the two sets of derivatives are essentially the

same.

One concern that can arise with this method is the fact that the rank is determined via

a collection of random samples of the model in question. Some may have concerns that

using random samples can risk not capturing the important directions in a model’s output and

can lead to highly inaccurate reduced output. This could prove to be an issue when applied

to models that do not have sufficient benchmarking data to check the accuracy of reduced

output.

A model with two directions will be considered. To be able to show what is

happening visually in a geometric sense, only two inputs will be considered for now. The

model that will be discussed is as follows:

 (29)

where , , and are vectors. The vectors and will be defined so that their

components are far enough apart to give the model two distinct directions.

 and

 are shown graphically in the , plane in Figure 4.18.

www.manaraa.com

Chapter 4: Examples and Test Cases

59

When the derivatives of the function are sampled, only inputs that are near the

directions of and (approximated by the red circles in Figure 4.18) will yield useful

information that captures these directions. Any samples not in this area will not contribute

significantly to determining the rank of the problem. When these directions are not known

beforehand, it must be insured that inputs used to sample the derivatives contain enough of

the components of these directions in order to be useful.

This idea will be expanded and tested with a model consisting of 100 inputs and three

orthogonal directions. The model will be similar to the one above.

 (30)

It is clear that when the rank finding algorithm is applied to this model, the effective

rank should be three. First, the rank finding algorithm will be applied but instead of

completely random inputs, random inputs that are near orthogonal to the problem space will

be used. As expected, the resulting sets of derivatives are essentially equal. This type of

result will not work well in the error criterion step () of the RFA. Table 4-3

gives results of the error criterion evaluated for effective rank estimations of .

It can be seen from the table that the orthogonal inputs do not correctly evaluate an

effective rank of three. Now, the RFA will be run as it is intended, with completely random

inputs and a cutoff error criterion of . The results are given in Table 4-4.

www.manaraa.com

Chapter 4: Examples and Test Cases

60

Figure 4.18: Graphical representation of the problem directions with the possible sampling

areas indicated

www.manaraa.com

Chapter 4: Examples and Test Cases

61

Table 4-3: Error criterion evaluations with random orthogonal inputs

Effective rank estimation Error criterion

1

2

3

4

5

Table 4-4: Error criterion evaluations with random inputs

Effective rank estimation Error criterion

1

2

3

www.manaraa.com

Chapter 4: Examples and Test Cases

62

The RFA now correctly selects an effective rank of three. The error criterion

evaluations exhibit a clear drop between each estimation of the rank with a very large drop

when the expected value of three is chosen. This example showcases that random inputs are

necessary to obtain proper results in the RFA.

4.6 Third Order function Approximated with Second Order derivatives

By being able to efficiently calculate higher order derivatives, detailed surrogate

models can be constructed that allow for faster calculations than using the full model. The

surrogate models that will be discussed here involves using a Taylor expansion to

approximate the model. The basic form that will be used is:

 (31)

where is the highest order of derivative used. For this example, first and second order

derivatives will be used to construct a surrogate model for a third order function. It will be

shown that sufficient accuracy can be achieved by not only using reduced derivative

calculations, but by using derivatives up to an order less than the actual model order. The

model that will be used in this example is:

 (32)

www.manaraa.com

Chapter 4: Examples and Test Cases

63

where all vectors are . Since this model uses vectors as inputs, the second order

Taylor series approximation used for the surrogate model will be modified as follows:

 (33)

where is the Jacobian and is the Hessian. This expression also

highlights another benefit of trying to only use up to second order derivatives. Using higher

order derivative tensors will lead to more complex expressions for surrogate models. If the

model does require higher order derivatives, they can still certainly be used, but the second

order approximation involves only simple matrix vector products.

 When the RFA with a cutoff error criterion of is applied to a code evaluating

the model in Equation (32), the effective rank is found to be five, as expected. Reduced

inputs were defined in a Rapsodia version of the code as was done in the previous examples.

The resulting reduced derivatives were collected in Matlab and a surrogate model was

constructed. Table 4-5 gives the values calculated by the actual model and the surrogate

model for inputs perturbed from a vector consisting of all ones.

The table shows that depending on the desired relative error, the surrogate model

evaluated around one point can be used to estimate the model values for a range of inputs

around that point. Figure 4.19 shows the surrogate model plotted against the actual model

www.manaraa.com

Chapter 4: Examples and Test Cases

64

Table 4-5: Surrogate model error evaluation around one point

Input
Perturbation

Actual Value
Surrogate Model

Value
Relative Error

-5% 3.173%

-2% 1.320%

-1% 0.6679%

+1% 0.6817%

+2% 1.376%

+5% 3.520%

www.manaraa.com

Chapter 4: Examples and Test Cases

65

Figure 4.19: Second order surrogate model plotted with actual function

www.manaraa.com

Chapter 4: Examples and Test Cases

66

for inputvectors consisting of 100 values all equal to 0.9750 to 1.280. The surrogate model

derivatives were evaluated at five points: and .

The surrogate model was then used to obtain estimated values of the model for and

 input perturbations around these points. In total, the surrogate model shown in the

figure consists of 25 points.

4.7 MATWS Test Case

In the MATWS code package, single channel calculations were performed using the

following inputs: axial expansion coefficient, Doppler coefficient, moderator temperature

coefficient, control rod driveline, and core radial expansion coefficient. The outputs of

interest are various temperatures within the channel: coolant temperature, structure

temperature, cladding temperature, and fuel temperature. This gives 4 5 output for the first

order derivatives and 15 and 35 directions for second and third order, respectively. The

following figures (Figure 4.20 through Figure 4.24) give plots of the fuel temperature

(TFUEL) for coarse variations () of each input variable separately in order to

see the amount of non-linearity. First and second order polynomial fits are included with

each figure along with the corresponding values. The degree to which each order

polynomial fits can be used to estimate what order of dependence TFUEL has on each

variable.

www.manaraa.com

Chapter 4: Examples and Test Cases

67

Figure 4.20: Fuel temperature for variations of the axial expansion reactivity coefficient

Figure 4.21: Fuel temperature for variations of the Doppler reactivity coefficient

R² = 0.9491
R² = 9.981484E-01

815

820

825

830

835

840

-0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001

TF
U

EL

ALFAEX

R² = 0.9947
R² = 1

827

828

829

830

831

832

833

834

-0.005 -0.004 -0.003 -0.002 -0.001 0 0.001

TF
U

EL

ALFADP

www.manaraa.com

Chapter 4: Examples and Test Cases

68

Figure 4.22: Fuel temperature for variations of the coolant reactivity coefficient

Figure 4.23: Fuel temperature for variations of the control rod expansion reactivity

coefficient

R² = 0.9824
R² = 9.997717E-01

800

810

820

830

840

850

860

870

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

TF
U

EL

ALFACL

R² = 0.9934
R² = 9.999877E-01

810

815

820

825

830

835

840

845

-100 -80 -60 -40 -20 0

TF
U

EL

ALFACR

www.manaraa.com

Chapter 4: Examples and Test Cases

69

Figure 4.24: Fuel temperature for variations of the radial core expansion coefficient

R² = 0.8745

R² = 0.9892
R² = 9.995177E-01

0

100

200

300

400

500

600

700

800

900

1000

-0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0

TF
U

EL

ALFARD

www.manaraa.com

Chapter 4: Examples and Test Cases

70

After applying the subspace identification algorithm (Python script in Appendix B)

and using OpenAD [11], it was found that the effective rank was r = 3, giving 6 and 10

directions for second and third order derivative calculations. The accuracy of the reduced

derivative calculations will be evaluated by constructing a surrogate model for the output

temperature vector T using the reference temperature vector 0T and input perturbation vector

 :

 (34)

where is the 4 5 Jacobian matrix of first order derivatives and are the 5 5 Hessian

matrices of second order derivatives that correspond to each output. Using an input

perturbation of 0.01% the maximum relative errors were found using the unreduced and

reduced derivatives. The ‘Relative Error (AD)’ column of Table 4-6 gives the maximum

relative error between the temperatures found using the unreduced and reduced surrogate

models. The ‘Relative Error (Real)’ column of Table 4-6 gives the maximum relative error

between the temperatures found using the reduced surrogate model and the actual values that

MATWS gives.

The output temperatures that MATWS calculates are ~ 800o F , making these errors

on the order of single degrees.

www.manaraa.com

Chapter 4: Examples and Test Cases

71

Table 4-6: MATWS test case results

Derivative
Order

Unreduced
Directions

Reduced
Directions

Relative
Error (AD)

Relative
Error (Real)

1 5 3 59.216 10 36.695 10
2 15 6 41.252 10 33.182 10

www.manaraa.com

Chapter 5: Conclusions and Future Work Recommendations

72

CHAPTER 5 Conclusions and Future Work Recommendations

5.1 Conclusions

This thesis has presented a new way to more efficiently use automatic differentiation

in order to calculate the derivatives of a computer code consisting of a computational model

with many inputs and outputs. This method can theoretically be applied to any program that

computes outputs based on multiple inputs, but the most effective use is when the

computational model in question is rank deficient. This rank deficiency can be exploited by

using the principles of ESM. A reduced set of pseudo variables can then be introduced into a

version of the source code that will be transformed using the AD software. An approximate

set of reduced derivatives can then be assembled using simple matrix-vector operations.

These derivatives are then suitable for usage in a variety of different applications including

sensitivity analysis, uncertainty quantification, and surrogate modeling.

5.2 Future Work Recommendations

Future work with this method will include the application to codes that are

differentiable with OpenAD and Rapsodia and are able to utilize larger input and output

streams. Potential codes include the components of the SCALE package from Oak Ridge

National Lab, namely CENTRM and BONAMI. These codes process thousands of cross

section values and would benefit from a more efficient differentiation method. Within

www.manaraa.com

Chapter 5: Conclusions and Future Work Recommendations

73

SCALE, the passage of derivative information from one differentiated code module to

another would be of interest as well.

www.manaraa.com

74

REFERENCES

[1] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation, SIAM, 1987.

[2] H. Bücker, B. Lang, A. Rasch and C. Bischof, "Computation of sensitivity information

for aircraft design by automatic differentiation," in International Conference on

Computational Science, Amsterdam, The Netherlands, 2002.

[3] M. Losch and P. Heimbach, "Adjoint Sensitivity of an Ocean General Circulation Model

to Bottom Topography," Journal Of Physical Oceanography, vol. 37, pp. 377-393,

2006.

[4] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach, C. Hill and C.

Wunsch, "OpenAD/F: A modular, open-source tool for automatic differentiation of

Fortran codes," ACM Transactions on Mathematical Software, 2008.

[5] I. Charpentier and J. Utke, Rapsodia User Manual, Argonne National Laboratory, 2011.

[6] S. J. Wilderman and G. S. Was, "Application of Adjoint Sensitivity Analysis to Nuclear

Reactor Fuel Rod Performance," Nuclear Engineering and Design, vol. 80, pp. 27-38,

1984.

[7] H. S. Abdel-Khalik, P. D. Hovland, A. Lyons, T. E. Stover and J. Utke, "A Low Rank

Approach to Automatic Differentiation," Advances in Automatic Differentiation, pp. 55-

65, 2008.

[8] H. Abdel-Khalik, P. Turinsky and M. Jessee, "Efficient subspace methods-based

algorithms for performing sensitivity, uncertainty, and adaptive simulation of large-scale

computational models," 2007.

[9] E. Moris, "Uncertainty in unprotected loss-of-heat-sink, loss-of-flow, and transient-

www.manaraa.com

75

overpower accidents," Argonne National Laboratory, 2007.

[10] J. Utke, U. Naumann and A. Lyons, "OpenAD/F: User Manual," Argonne National

Laboratory, 2012.

[11] M. Alexe, O. Roderick, M. Anitescu, J. Utke, T. Fanning and P. Hovland, "Automatic

differentiation of codes in nuclear engineering applications," ANL-MCS-310, 2010.

[12] H. Abdel-Khalik, "Adaptive Core Simulation," North Carolina State University, 2004.

[13] N. Halko, P. Martinsson and J. Tropp, "Finding Structure with Randomness

Probabilistic Algorithms for Constructing Approximate Matrix Decompositions," in

SIAM, 2011.

www.manaraa.com

76

APPENDICES

www.manaraa.com

77

Appendix A

OpenAD code for the Scalar-valued Model Example

subroutine head(x,ypseudo,n)

 integer :: i,n

 double precision :: x(n)

 double precision :: ypseudo,y1,y2,y3,y4

 double precision :: a(n),b(n),c(n),d(n),e(n)

 open(unit=20, file='Rinput.in.txt', status='old', action='read')

 do i=1,n

 read(20,*) a(i),b(i),c(i),d(i),e(i),x(i)

 end do

 close(20)

 y=0.0d0

 y1=0.0D0

 y2=0.0D0

 y3=0.0D0

 y4=0.0D0

!$openad INDEPENDENT(x)

 do i=1,n

 y1=y1+a(i)*x(i)

 y2=y2+b(i)*x(i)

 y3=y3+c(i)*x(i)

 y4=y4*d(i)*x(i)

 end do

 ypseudo=y1+y2**2+sin(y3)+1/(1+exp(y4))

!$openad DEPENDENT(ypseudo)

end subroutine

www.manaraa.com

78

program driver

 use OAD_active

 use OAD_rev

 implicit none

 external head

 type(active),allocatable :: x(:)

 type(active) :: ypseudo

 integer :: i,n,j

 character*3 :: ypos

 character(len=5) :: BUFFER

 call getarg(1,BUFFER)

 read(BUFFER,'(i10)') n

 allocate(x(n))

 open(unit=11, file='der_out.txt', action='write')

 our_rev_mode%tape=.TRUE.

 ypseudo%d=1.0D0

 x%d=0.0D0

 call head(x,ypseudo,n)

 do j=1,n

 write(11,*) x(j)%d

 end do

 close(11)

end program driver

www.manaraa.com

79

Rapsodia code for the Scalar-valued Model Example

PROGRAM DRIVER

 INCLUDE 'RAinclude.i90'

 USE higherOrderTensorUtil

 IMPLICIT NONE

 INTEGER :: O, DIRS, max_order

 TYPE(higherOrderTensor) :: T

 INTEGER, DIMENSION(:,:), ALLOCATABLE :: SeedMatrix

 REAL(KIND=RAdKind), DIMENSION(:,:), &

 ALLOCATABLE :: TaylorCoefficients

 REAL(KIND=RAdKind), DIMENSION(:), &

 ALLOCATABLE :: CompressedTensor

 TYPE(RARealD), allocatable :: x(:), pseudo(:)

 TYPE(RARealD) :: y

 integer :: i,n,j,k,p

 max_order=1

 n=100

 k=3

 allocate(x(n),pseudo(k))

 CALL setNumberOfIndependents(T, k)

 CALL setHighestDerivativeDegree(T, max_order)

 DIRS = getDirectionCount(T)

 ALLOCATE(SeedMatrix(k, DIRS))

 CALL getSeedMatrix(T, SeedMatrix)

 ALLOCATE(TaylorCoefficients(max_order, DIRS))

 ALLOCATE(CompressedTensor(DIRS))

 !output file

 open(unit=10, file='deriv_out.txt', action='write')

 WRITE (*,'(A,I3.1)') 'Number of directions = ', DIRS

 do j=1,k

 do i=1,DIRS

 CALL RAset(pseudo(j), i, 1, REAL(SeedMatrix(j, i), KIND=RAdKind))

 end do

 end do

 call head(x,y,n,k,pseudo)

 do i=1,max_order

 do j=1,DIRS

 CALL RAget(y, j, i, TaylorCoefficients(i, j))

 end do

 end do

 CALL setTaylorCoefficients(T, TaylorCoefficients)

 CALL getCompressedTensor(T, max_order, CompressedTensor)

 DO i = DIRS, 1,-1

 DO j = 1, k

 WRITE (10,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']'

 END DO

 WRITE (10,*) CompressedTensor(i)

 END DO

 close(10)

 DEALLOCATE(CompressedTensor)

 DEALLOCATE(TaylorCoefficients)

www.manaraa.com

80

(continued)

 CALL setTaylorCoefficients(T, TaylorCoefficients)

 CALL getCompressedTensor(T, max_order, CompressedTensor)

 DO i = DIRS, 1,-1

 DO j = 1, k

 WRITE (10,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']'

 END DO

 WRITE (10,*) CompressedTensor(i)

 END DO

 close(10)

 DEALLOCATE(CompressedTensor)

 DEALLOCATE(TaylorCoefficients)

 DEALLOCATE(SeedMatrix)

END PROGRAM DRIVER

subroutine head(x,y,n,k,pseudo)

 INCLUDE 'RAinclude.i90'

 integer :: n,i,k

 TYPE(RARealD) :: x(n), pseudo(k),y1,y2,y3,y4,y

 double precision :: a(n),b(n),c(n),d(n),e(n),q(n,k)

 !read input

 open(unit=42, file='Rinput.in.txt', status='old', action='read')

 do i=1,n

 read(42,*) a(i),b(i),c(i),d(i),e(i),x(i)%v

 end do

 close(42)

 !read Q

 open(unit=55, file='Q.in.txt', status='old', action='read')

 do i=1,n

 read(55,*) (q(i,j),j=1,k)

 end do

 close(55)

 !pseudo variables

 do j=1,k

 do i=1,n

 pseudo(j)%v=pseudo(j)%v+q(i,j)*x(i)%v

 end do

 end do

 x=0.0d0

 do i=1,n

 do j=1,k

 x(i)=x(i)+q(i,j)*pseudo(j)

 end do

 end do

 !model calculation

 do i=1,n

 y1=y1+a(i)*x(i)

 y2=y2+b(i)*x(i)

 y3=y3+c(i)*x(i)

 y4=y4*d(i)*x(i)

 end do

 y=y1+y2**2+sin(y3)+1/(1+exp(y4))

www.manaraa.com

81

(continued)

 !model calculation

 do i=1,n

 y1=y1+a(i)*x(i)

 y2=y2+b(i)*x(i)

 y3=y3+c(i)*x(i)

 y4=y4*d(i)*x(i)

 end do

 y=y1+y2**2+sin(y3)+1/(1+exp(y4))

 !end model calculation

end subroutine

 x=0.0d0

 do i=1,n

 do j=1,k

 x(i)=x(i)+q(i,j)*pseudo(j)

 end do

 end do

 !model calculation

 do i=1,n

 y1=y1+a(i)*x(i)

 y2=y2+b(i)*x(i)

 y3=y3+c(i)*x(i)

 y4=y4*d(i)*x(i)

 end do

 y=y1+y2**2+sin(y3)+1/(1+exp(y4))

 !end model calculation

end subroutine

www.manaraa.com

82

Appendix B

Python script used for the subspace identification algorithm for MATWS

www.manaraa.com

83

#!/usr/local/apps/python-2.6.5/bin/python

from scipy import linalg

import numpy, getopt, sys

from numpy import dot, transpose, zeros, random

import os, commands

e=0.000001

#get value of n

n=int(sys.argv[1])

#get value of k

k=int(sys.argv[2])

In=numpy.genfromtxt('input.txt')

Y=numpy.zeros((n,k))

i=0

while (i<k):

 #run the forward driver

 status,output=commands.getstatusoutput('./reactor_OAD_MP <

Reference_ULOF.input > output')

 print status

 #input Y from output of forward driver

 Y[:,i]=numpy.genfromtxt('der_out.txt')

 j=0

 while(j<n):

 In[j]=In[j]+In[j]*0.2

 j=j+1

 numpy.savetxt('input.txt',In)

 i=i+1

numpy.savetxt('Y',Y)

#calculate SVD of Y

U,S,V=linalg.svd(Y)

#determine reduced Y

r=S.shape[0]

S[r-1]=0

Yk=dot(dot(U,linalg.diagsvd(S,len(Y),len(V))),V)

Yk0=Yk

i=2

while (linalg.norm(Y-Yk0)/linalg.norm(Y) < e):

 Yk=Yk0

 S[r-i]=0

 Yk0=dot(dot(U,linalg.diagsvd(S,len(Y),len(V))),V)

 i=i+1

#calculate QR of Yk

Q,R=linalg.qr(Yk)

r=numpy.sum(S > 1e-10)+1

Q1=Q[:,0:r]

#output Q to file for reverse input

numpy.savetxt('Q.in.txt',Q1)

