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ABSTRACT 

REED, JAMES ALLEN.  A Low Rank Approach to Computing Derivatives Using 

Automatic Differentiation.  (Under the direction of Hany S.  Abdel-Khalik). 

 

This manuscript outlines a new approach for increasing the efficiency of applying automatic 

differentiation (AD) to large scale computational models. By using the principles of the 

Efficient Subspace Method (ESM), low rank approximations of the derivatives for first and 

higher orders can be calculated using minimized computational resources. The output 

obtained from nuclear reactor calculations typically has a much smaller numerical rank 

compared to the number of inputs and outputs. This rank deficiency can be exploited to 

reduce the number of derivatives that need to be calculated using AD. The effective rank can 

be determined according to ESM by computing derivatives with AD at random inputs. 

Reduced or pseudo variables are then defined and new derivatives are calculated with respect 

to the pseudo variables. Two different AD packages are used: OpenAD and Rapsodia. 

OpenAD is used to determine the effective rank and the subspace that contains the 

derivatives. Rapsodia is then used to calculate derivatives with respect to the pseudo 

variables for the desired order. The overall approach is applied to a few simple mathematical 

model problems and to MATWS, a simplified safety code for sodium cooled reactors.  
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CHAPTER 1 Introduction 

 

1.1 Applications of Automatic Differentiation 
 

Because detailed nuclear reactor calculations involve large input and output streams, 

calculating derivative information can be a very time consuming task.  Derivative 

information is required for many aspects of nuclear engineering and analysis, such as 

sensitivity analysis, design optimization, code-based uncertainty propagation, and data 

assimilation.  One tool that can be used to facilitate the calculation of derivatives is automatic 

differentiation (AD) software.  AD is a technique to reinterpret or completely transform a 

computer program implementing a numerical model with the goal to calculate the derivatives 

of specified output variables of the model with respect to specified input variables.  The 

principal method of AD is the application of the chain rule to the given elemental 

decomposition of a mathematical function [1].  With continuing advances in computer 

power, the application of AD is becoming a more feasible and attractive option for the 

calculation of accurate derivatives [2] [3].   

1.2 Uses of Derivatives 
 

Derivative information is essential to sensitivity analysis, uncertainty quantification, 

design optimization, data assimilation, and surrogate modeling.  Sensitivity analysis involves 

relating the changes in the outputs of a model to changes in the inputs.  This is usually 

accomplished by using the Jacobian operator, a matrix of first order derivatives.  Uncertainty 
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quantification can utilize model parameter sensitivities to estimate the potential error in 

outputs in order to validate model.  Derivatives are used in design optimization problems in 

order to effectively tweak design parameters to obtain optimal performance.  Data 

assimilation uses derivatives for statistical interpolation of given data in order to estimate the 

state of a given system.  Surrogate modeling requires derivatives in order to build an 

approximate model of a system via a truncated Taylor expansion. 

The means of obtaining the full derivatives that populate the Jacobian matrix for a 

sufficient number of model operating points is a very time and resource consuming task.  AD 

can be used to obtain the derivative values to within machine precision.  Other possible 

methods that are used for obtaining derivatives from computer codes of engineering models 

involve hand-coding derivatives and using finite differences, but some of the more advanced 

methods are the Generalized Perturbation Method and the Adjoint Method [4].  These 

methods generally allow the computer code to be run faster than the corresponding AD 

versions of the code, but the accuracy is generally lower and there is more room for error.  

Therefore, it is desirable to enhance the efficiency of using AD and maintain acceptable 

accuracy.   

Two software package options for AD are OpenAD (www.mcs.anl.gov/OpenAD) and 

Rapsodia (www.mcs.anl.gov/Rapsodia).  In OpenAD, the derivative evaluation is performed 

by a program resulting from the analysis and transformation of the original program that 

implements the mathematical function or model of interest [4].  While OpenAD relies on 

source transformation to accomplish derivative calculations, the Rapsodia tool uses operator 
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overloading as the vehicle of attaching derivative computations to the elementary operations 

provided by the programming language such as the arithmetic operators and intrinsic 

functions sin(x), exp(x), and so forth [5].  In our context, we use OpenAD with the so-called 

reverse mode providing for the efficient computation of gradients with respect to a large 

number of inputs.  In contrast, Rapsodia implements higher order derivative computation in 

forward mode.  It is normally efficient for a small number of input variables and the 

overloading overhead becomes negligible with higher derivative order.  Both approaches are, 

in principle, capable of calculating higher order derivatives.  Higher-order derivatives with 

source transformation by repeated application of the transformation tool increases complexity 

of the tool and the program size and has not been shown to yield large benefits when 

compared to operator overloading keeping in mind the expected small number of input 

variables. 

In nuclear engineering, derivatives are mainly used for the purposes of sensitivity 

analysis and uncertainty quantification.  Computational methods and uncertainties in input 

data are the main limitation of the calculations necessary to design nuclear reactor systems.  

Sensitivity analysis is often used to analyze the nuclear fuel cycle and the behavior of the 

fuel.  In analyzing a nuclear fuel rod, the sensitivities of key variables (fuel centerline 

temperature, fission gas release, clad stress, etc.) to input parameters are found to be highly 

non-intuitive and strongly dependent on the fuel-clad gap status and the history of the fuel 

during the cycle [6].  The number of variables analyzed can be quite large, especially when 

highly dimensioned reactor wide calculations are performed.  For example, the outputs of 
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interest could be the neutron flux, fuel temperature, moderator temperature, and void fraction 

at thousands of points throughout the reactor.  The inputs of interest could be the complete 

set of neutron cross sections that quantify the probabilities of different reactions taking place 

in each type of material.  It is easy to see that as the dimensions and details of the 

calculations increase, the number of derivatives increases as well.  The increase in the 

number of higher order derivatives grows exponentially.  For typical nuclear reactor 

calculations, the number of inputs n and outputs m are on the orders of 610  and 510 , 

respectively.  The numerical rank r of these problems is often orders of magnitude smaller 

than the size of the input and output data streams with r typically around 210  [7].  This fact 

can be used to reduce the effective dimensions of the problem and lessen the computational 

time and storage requirements. 

1.3 Problem Reduction via the Efficient Subspace Method 
 

The mathematical theory of efficient subspace methods (ESM) recognizes that the 

design and/or analysis of an engineering system is often judged by a few macroscopic 

metrics that capture the overall behavior of the system [8].  ESM exploits the ill-conditioning 

of the Jacobian matrix to reduce the number of code runs of the forward and reverse modes 

of AD to a minimum [7].  ESM utilizes various properties from linear algebra including 

orthogonality and the singular value decomposition (SVD) in order to identify the minimum 

information necessary to represent the overall response of the system.  It can be shown by 

doing a rigorous sensitivity analysis of a system that variations in some inputs do not 
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contribute much to the overall behavior of the system relative to other inputs.  These 

variables are deemed to be not as important, and by identifying them through ESM, their 

place in the overall analysis can be lessened or ignored in order to focus on the more 

important quantities and still capture the overall behavior of the system.   

An example that illustrates the ideas behind ESM is in calculus for an integral 

quantity such as distance via velocity profiles.  The same distance can be obtained by 

integrating different velocity profiles.  Therefore, the question becomes “how can one 

identify the required modeling changes associated with the different physics that will lead to 

more accurate estimation of the macroscopic metrics of interest?” rather than “how can one 

enhance the accuracy of the different field solutions [8]?” 

1.4 Multi-scale Phenomena Modeling 
 

The large rank reduction that can be obtained in some reactor calculations is a result 

of the multi-scale phenomena modeling (MSP) strategy on which nuclear reactor calculations 

are based.  Besides nuclear reactor calculations, many other engineering systems involve 

large variations in both time and length scales and are examples of applications of MSP.  In 

fact, many of today’s important engineering and physical phenomena are modeled via MSP, 

e.g.  weather forecast, geophysics, materials simulation [7].  To accurately model the large 

time and scale variations, MSP utilizes a series of models varying in complexity and 

dimensionality [7].  First, high resolution (HR) microscopic models are employed to capture 

the basic physics and the short scales that govern system behavior.  The HR models are then 
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coupled with low resolution (LR) macroscopic models to directly calculate the macroscopic 

system behavior, which is often of interest to system designers, operators, and 

experimentalists.  The coupling between the different models results in a gradual reduction in 

problem dimensionality thus creating large degrees of correlations between different data in 

the input and output (I/O) data streams.  ESM exploits this situation by treating the I/O data 

in a collective manner in search of the independent pieces of information.  The term ‘Degree 

of Freedom’ (DOF), adopted in many other engineering fields, is used to denote an 

independent piece of information in the I/O stream.  An active DOF denotes a DOF that is 

transferred from a higher to a lower resolution model, and an inactive DOF denotes a DOF 

that is thrown out.  ESM replaces the original I/O data streams by their corresponding active 

DOFs.  The number of active DOFs can be related to the numerical rank of the Jacobian 

matrix.   

1.5 Thesis Contents 
 

This manuscript presents a method for using OpenAD and Rapsodia to efficiently 

calculate first and higher order derivatives by reducing the size of the input stream according 

to the efficient subspace method (ESM).  Chapter 2 of this work describes the computational 

methods and theory behind AD and the application of ESM.  Chapter 3 presents a 

generalized description of how this approach can be applied to a computational model.  

Chapter 4 presents some simple examples of using the method as well as the results of 

applying this approach to MATWS, a safety code for sodium cooled fast reactors that 
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combines the SAS4A/SASSYS computer code with a simplified representation of the reactor 

heat removal system [9].  
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CHAPTER 2 Computational Methods 

2.1 AD Theory 
 

The quick, easy, intuitive (but inaccurate) way to calculate derivatives is by using a 

finite difference or divided difference approach.  The first order derivative for a function 

       is given by: 

  

  
       

           

 
 

 

(1) 

This method requires very small values of h in order to obtain useful results.  Automatic (or 

algorithmic) differentiation instead relies on the exact analytical expressions of the 

derivatives for the basic functions (              ) that make up the overall function in 

question.  The chain rule of differentiation is used in order to follow the differentiation 

calculation through the basic functions of the program.  Equation (2) gives the chain rule for 

a function f that is a function of another function g which is a function of x.  Thus, f is 

ultimately a function of x itself.   

  

  
                         (2) 

Equation (3) gives the chain rule in the case when        and       . 

  

  
 

  

  

  

  
 (3) 

 To show how the chain rule is used in AD, consider the following the example.  

Consider the following function where           : 
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(4) 

A computer will calculate y from    and    in much the same way that a human being would 

go about doing it by hand.  Intermediate values will be calculated for the lowest level sub-

functions (such as       in this case), and then the values for these sub-functions will be 

used to calculate the values for higher level functions (                              

   ).  This process is continued until the overall value for the function is computed.  Most 

AD software packages follow this same control flow that is referred to as an evaluation trace.  

An evaluation trace is basically a record of a particular run of a given program, with 

particular specified values for the input variables, showing the sequence of floating point 

values calculated by a (slightly idealized) processor and the operations that computed them 

[1].  Table 2-1 shows an evaluation trace for Equation (4).   

The    intermediate mathematic variables are different from normal program 

variables as they can normally not be assigned a value more than once [1].  A real computer 

program that models an actual engineering system will contain functions that are much more 

complex and have many more intermediates than the one given by Equation (4).  To 

effectively follow variables through a program, a “computational graph” is often used to give 

a visual representation of an evaluation trace [1].  Figure 2.1 shows the computational graph 

for the evaluation trace in Table 2-1. 
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Table 2-1: Evaluation Trace for Equation (4) 

    =     = 2.000   

   =     = 1.000   

   =         = 2.000/1.000 = 2.000 

   =         =            = 3.762 

   =        =           = 0.9093 

   =        =           = 7.389 

   =  
  

    
 =  

     

             
 = 0.5600 

   =            =                      = 5.120 

  =     =          
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Figure 2.1: Computation Graph of Table 2-1 
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2.1.1 Forward Mode 

 

Many AD packages feature two ways to follow the evaluation trace of the program.  

The first and most basic way that an AD package can operate is by calculating the derivatives 

of the inputs and following the evaluation trace to the outputs, calculating the derivatives of 

each intermediate along the way.  In the example presented earlier, in order to calculate 

derivatives of y with respect to   , each intermediate variable must be differentiated with 

respect to    and evaluated for the desired values of    and   .  This will create new 

intermediate derivative variables (           ) that will be associated with each 

corresponding intermediate variable.  Starting with the first line in Table 2-1 it is easy to see 

that           and         .  Moving to    gives the following: 

                                
              

  
 

 
                            

      
       

Table 2-2 gives the full evaluation trace for the forward calculation of derivatives.  If 

derivatives with respect to    are desired, the process can be repeated but instead     

       and           .  For problems with multiple outputs, the forward mode can be 

used to obtain the derivatives of each desired output variable with respect to a single input 

variable in one run.  This makes the forward mode more desirable to use when the number of 

outputs is larger than the number of inputs.  
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Table 2-2: Forward mode evaluation trace 

    =     = 2.000   

     =      = 1.000   

   =     = 1.000   

    =      = 0.000   

   =         = 2.000/1.000 = 2.000 

    =                   
   =                                = 1.000 

   =         =              = 3.762 

    =            =                   = 3.627 

   =        =             = 0.9093 

    =           =                  = -0.4161 

   =        =             = 7.389 

    =           =                  = 7.389 

   = 
  

    
  = 

     

             
  = 0.5600 

    = 
                         

       
  = 

                                               

            
  = 0.2361 

   =            =                      = 5.120 

    =                     =                                      = 5.032 

  =     =          

   =      =          
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2.1.2 Reverse Mode 

 

In addition to the forward mode, some AD packages (including OpenAD) feature a 

reverse or adjoint mode.  Instead of selecting an independent variable and calculating the 

derivatives of every intermediate variable with respect to that variable, a dependent variable 

is chosen and the derivatives of that variable with respect to each intermediate variable are 

calculated [1].  In order to perform an evaluation trace in the reverse mode, new adjoint 

variables will be defined.  Let     
  

   
 (in a strict sense,     actually is defined to be 

  

   
 where 

   is a new independent variable added to the right-hand side of the equation defining    [1]).  

The evaluation trace starts from the final steps of the normal evaluation trace and works 

backwards, hence reverse mode.  The desired dependent adjoint variable will be set to 1.000, 

which for this case of a single output means that            Table 2-3 gives the normal 

evaluation trace followed by the evaluation trace for a reverse mode derivative calculation.  

Note that each line in the reverse mode calculation is lined up with the corresponding line of 

the model calculation above.  The application of the chain rule in reverse mode can be 

confusing, so as an example, consider tracing backwards through the model calculation to the 

line             .  Here,    depends on    and   .  The adjoint variables corresponding 

to this line are     
  

   
 

  

   

   

   
 and     

  

   
 

  

   

   

   
.  Noting that 

  

   
     and 

evaluating the current expression for    to get the other required derivatives gives           

and                .  The next step is to follow the normal evaluation trace backwards to 
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the next step,    
  

    
, and repeat.  For variables that appear multiple times in the trace 

(such as   ), the previously calculated adjoint values are accumulated into the new 

calculation (as is shown in the lines                  and                 ).   

The value 
  

   
           obtained in the reverse mode trace agrees with what was 

obtained in the forward trace shown in Table 2-2.  Also note that 
  

   
 was calculated in the 

reverse mode trace with only a single extra calculation.  This makes the reverse mode useful 

for models where the number of inputs is greater than the number of outputs.  However, the 

reverse mode transformation can be difficult to implement due to the fact that the evaluation 

trace must be reversible which can be an issue for some model codes.   

 

2.1.3 Active Variables 

 

The concept of an ‘active variable’ is important to AD.  An ‘active variable’ is any 

variable in the model that comes into contact via assignment to the dependent/independent 

variables.  For example, in a program that computes   from   in the following fashion: 

                 

and 
  

  
 is the value desired by AD calculation, the active variables are      and  .  The 

parameters   and   are viewed as ‘passive variables’ as they are not assigned values that 

depend on the independent variable  .  It will be shown in the following sections that active 
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variables in OpenAD and Rapsodia require type changes from real, double precision, etc.  to 

a custom defined active type in order to operate.   

2.2 OpenAD 
 

OpenAD uses association by address [5], that is an active type, as the means of 

augmenting the original program data to hold the derivative information.  The usual activity 

analysis would ordinarily trigger the re-declaration of only a subset of common block 

variables.  Because the access of the common block via the array enforces a uniform type for 

all common block variables to maintain proper alignment, all common block variables had to 

be activated.  Furthermore, because the equivalence construct applied syntactically only to 

the first common block variable, the implicit equivalence of all other variables cannot be 

automatically deduced and required a change of the analysis logic for OpenAD to maintain 

alignment by conservatively overestimating the active variable set.  Superficially this may 

seem a drawback of the association by address.  The association by name [10], used in other 

AD source transformation tools will not fare better though.  Shortening the corresponding 

loop for the name-associated and equivalenced derivative-carrying array is difficult for 

interspersed passive data and therefore one will resort to the same alignment requirement. 

2.3 Rapsodia 
 

Rapsodia is based on operator overloading for the forward propagation of univariate 

Taylor polynomials.  All other operator overloading based AD tools have overloaded 
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operators that are hand-coded, operate on Taylor coefficient arrays with variable length in 

loops with variable bounds to accommodate the derivative orders and numbers of directions 

needed by the application.  In contrast, Rapsodia generates on demand a library of 

overloaded operators for a specific number of directions and a specific order.  Thus, at 

compile time, the loops are already represented in (partially) unrolled code along with a fixed 

(partially flat) data structure that provides more freedom for compiler optimization.  Because 

of the overall assumption that r, the reduced input dimension, is much smaller than m the 

higher order derivative computation in forward mode is feasible and appropriate. 

Because overloaded operators are triggered by using a special (active) type for which 

they are declared it now appears as a nice confluence of features that OpenAD for the 

gradient computation already does the data augmentation via association by address, i.e.  via 

an active type, and therefore the assumption could be made that one merely has to change the 

OpenAD active type to a Rapsodia active type to use the operator overloading library. 

2.4 Efficient Subspace Method 
 

Subspace methods are based on mathematical ideas in linear algebra.  The key 

components are the vector spaces that exist in matrix representations of the inputs and 

outputs of a model in question.  The goal of using subspace methods in relation to the method 

presented here is to determine a low rank approximation of the model using information 

gathered from the first order sensitivity (Jacobian) matrix.  The effective rank that is desired 

corresponds to the active degrees of freedom (DOF) of the model.  A DOF denotes an 
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independent piece of information in the input/output stream [8].  An active DOF denotes a 

DOF that is transferred from a higher to a lower resolution model, and an inactive DOF 

denotes one that is thrown out [8].   

A very important tool used in subspace methods is the matrix decomposition.  

Examples of common matrix decompositions are the QR factorization and singular value 

decomposition (SVD).  For an     Jacobian matrix   with rank           , the SVD 

is given by:  

 

       (5) 

 

where        and        are full column rank orthonormal matrices that constitute 

orthonormal bases for the vector spaces    and   , respectively.         is a nonsingular 

diagonal matrix whose elements correspond to the singular values (usually organized from 

largest to smallest) of  .   

 The SVD is a so called ‘rank revealing’ decomposition because the number of non-

zero singular values correspond to the numerical rank of the original matrix.  In practice, all 

singular values will be non-zero, but the SVD still allows for the ‘effective’ rank to be 

determined.  Only the largest singular values will count towards the effective rank.  The 

cutoff criterion that determines which singular values count towards the effective rank can 

vary depending on the desired accuracy.   
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 By determining an effective rank of a matrix which is lower than         , a low 

rank approximation can be constructed.  After determining the effective rank by inspection of 

the SVD or by using the rank finding algorithm that will be introduced in the next section, a 

number of vectors corresponding to the size of the active subspace can be used in 

constructing a low rank approximation.   

2.5 General Methodology 
 

To start, a simple example of constructing a low rank approximation to a matrix 

operator will be considered.  Let the matrix in question in be       .  The elements of   

are not known, but the ability to perform matrix vector products with   and    is available.  

The steps involved in determining a low rank approximation of   are as follows: 

1. Use k  random Gaussian input vectors      to compute k  matrix vector products: 

           

2. Perform a QR decomposition on the responses:                             

3. Determine the effective rank r using the Rank Finding Algorithm (RFA): 

a. Choose a small integer k  

b. Choose a sequence of k  random Gaussian vectors  
1

k

i i
w


 

c. Calculate ( )T

i y y iy x I Q Q A  for all i  where Q  is the n r  matrix identified 

in the steps above. 



www.manaraa.com

Chapter 2: Computational Methods 

 

21 

4. If r k , continue.  Otherwise, add more matrix vector products in step 1 and repeat 

steps 2 and 3 

5. Calculate T

i ip q A  for all i  

6. Using the  and i ip q  vectors, a low rank approximation of the form TA USV  can 

be calculated as shown in the appendix of [9].   

It has been shown in other works [12] that the effective rank r  can be determined with at 

least        probability when Q  satisfies the following criterion: 

 

                      (6) 

 

where   is the user specified error allowance.  In real applications, these ideas can be applied 

by replacing the matrix operator with a computational model.  Let the computational model 

of interest be described by a vector valued function: 

 

       

 

where       and      .  The goal of this methodology is to compute the entire set of 

derivatives for a given order by reducing the dimensions of the problem and thus reducing 

the computational and storage requirements.  First, the case where 1m  , i.e.  a single-

valued model, will be considered.  A general function      can be expanded around a 
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reference point    as follows (without loss of generality, assume that      and         

in order to simplify the representation): 

 

             

             

             

      

 

               

 

   

 (7) 

 

where        
  can be any kind of scalar functions.  The outer summation over the variable k  

goes from 1 to infinity.  Each term represents one order of variation, e.g.  1k   represents 

the first order term; 2k  , the second order terms.  For the case of        , the thk  term 

reduces to the thk  term in a multi-variable Taylor series expansion.  The inside summation 

for the thk  term consists of k  single valued functions        
  that are multiplying each other.  

The arguments for the        
  functions are scalar quantities representing the inner products 

between the vector   and n  vectors     

   
 
    

 

 which span the parameters space.  The 

superscript ( )k  implies that a different basis is used for each of the k-terms, i.e.  one basis is 

used for the first-order term, another for the second-order term and so on.   

Any input parameter variations that are orthogonal to the range formed by the 

collection of the     

   
  vectors will not produce changes in the output response, i.e.  the 

value of the derivative of the function will not change.  If the     

   
  vectors span a subspace 

of dimension r as opposed to n, then effective number of input parameters can be reduced 
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from n to r.  The mathematical range can be determined by using only the first-order 

derivatives. 

 

Differentiating Eq. (7) with respect to x gives: 

 

        

         

                 

        
     

                

             

       

 

               

 

   

 

 

(8) 

where     

l l

k T k

l j jx    is the derivative of the term   
l

k T

l j x  .  Eq. (3) can be reinterpreted 

to show that the gradient of the function is a linear combination of the  
{ }

l

k

j  vectors: 

              

   
   

   

 

               

    
   

    

   
  

 
 
 
 
   

   

 

   

   

  
 
 
 
  

   

    

 

(9) 

where  

 

   

   
       

    
             

    
    

     

    
            

    
         

    
   (10) 

 

In a typical application, the B matrix will not be known beforehand.  It is only necessary to 

know the rank r of B which can be accomplished using the rank finding algorithm (RFA).  
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After determining the effective rank, it can be seen that the function only depends on r 

effective dimensions and can be reduced to simplify the calculation.  The reduced model only 

requires the use of the subspace that represents the range of B, of which there are infinite 

possible bases.   

This concept will now be expanded to a multi-response model.  The 
thq  response of 

the model and its derivative are given by: 

 

                

               

               
      

 

               

 

   

 

 

(11) 

 

                    

         
       

               
      

 

               

 

   

     
   

 

 

(12) 

 

The active subspace of the overall model must contain the contributions of each individual 

response.  The matrix B will contain the       
   

  vectors for all orders and responses.  To 

determine a low rank approximation, a pseudo response            will be defined as a 

linear combination of the m responses: 
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(13) 

 

where 
q  are randomly selected scalar factors.  The gradient of the pseudo response is: 

 

              

              

    
               

    
              

    
     

       
    

       
   

 

               

 

   

 

   

 

 

(14) 

 

Calculating derivatives of the pseudo response as opposed to each individual response 

provides the necessary derivative information while saving considerable computational time 

for large models with many inputs and outputs. 
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CHAPTER 3 Implementation 

3.1 Implementation on a General FORTAN Code 
 

The computational model that is executed in the computer code of interest will be 

assumed to be of the following form: 

 

       (15) 

 

where y is an 1m  vector whose components correspond to the m outputs of interest, x is an 

1n  vector whose components correspond to the n inputs of interest, and   corresponds to 

the unknown operator acting on the inputs to produce output.  No previous information of   

is needed; only the ability to obtain y from x is necessary for this method to work.  The next 

step is to define the pseudo response y : 

 

        

 

   

 (16) 

 

where iy  are the individual components of the response vector y.  This will be done with an 

invasive definition in the computer code, preferably in the highest level routine.  Once the 

pseudo response has been defined, the reverse mode of OpenAD will be utilized to obtain 

derivatives of the pseudo response with respect to each input variable.  Once an executable 
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form of the code is created to calculate the 1n  vector 
   

  
, the active subspace of the model 

will be found by generating a set of derivative vectors, which span the union of all single-

responses active subspace.  The code will be run using a random set of inputs,            .  

The responses will then be collected into the columns of an n k  matrix G: 

 

    
   

  
 
    

 
   

  
 
    

  
   

  
 
    

  (17) 

 

Now, the effective rank of G will be found via the Rank Finding Algorithm (RFA).   

 

             (18) 

 

where the sub-matrix        contains only the first r columns of  .  The rank is selected 

in the RFA to satisfy a user defined error metric such that 

 

        
       (19) 

 

where     is the    norm. The columns of the    matrix will be used to define the pseudo 

inputs that will be coded into a version of the code that will be used with Rapsodia to 

calculate derivatives of the output responses with respect to the pseudo inputs of a desired 

order.  The pseudo inputs are defined as: 

     
   (20) 
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In order to satisfy the logical order of derivative calculation by means of the chain rule of 

differentiation 
dy dy dx

dx dx dx

 
 

 
, x will be defined in the code in terms of x  and the columns of 

  :  

       (21) 

 

This line is what must be inserted into the code, preferably in the top level routine.  Now 

Rapsodia will be used to create an executable version of the code that calculates 
1

( )

( )( )

1...
n

O

oo

n

d y

dx dx

 
 
 

 

where O is the desired derivative order and 1 ... no o O   .  For first order calculations, the 

full derivatives can be recovered utilizing the following relation that comes from the chain 

rule of differentiation: 

   

   
  

   

    

    
   

  
   

    
   

 

   

 

 

   

 (22) 

 

The following matrix operation can also be used:       
  where    is the matrix of derivatives 

with respect to the pseudo variables.  From Eq.(20), it can easily be determined that 
    

   
 

   .  For orders greater than 1, the mixed derivatives play a part in the reconstruction.  The 

following equation shows how the second order derivatives are reconstructed on an element 

by element basis for a non-mixed derivative:  
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 (23) 

 

The following matrix operation can also be used:           
  where     is the matrix of 

second order derivatives of response i with respect to the pseudo variables.  For example, the 

second derivative of output i = 1 with respect to input j = 1 in a problem with an effective 

rank of r = 2 would be recovered by 

2 2 22
2 21 1 1

11 11 12 122 2 2

1 1 1 2 2

1
2

d y d y d yd y
q q q q

dx dx dx dx dx
   .  Mixed 

derivatives would be recovered by:  

 

 
2 2

,

i i
jk gl

k lj g k l

d y d y
q q

dx dx dx dx
  (20) 

 

In the same case as before (r = 2),  
2 2 2 2

1 1 1 1
11 12 11 22 12 21 12 222 2

1 1 1 1 2 2

d y d y d y d y
q q q q q q q q

dx dx dx dx dx dx
    .  

It can be inferred that for derivatives of order O, the non mixed derivatives can be recovered 

using the following expression:  

 

 
( ) ( )

( )
, ,... ...

O O

i i
jk jl jzO

k l oj k l z

d y d y
q q q

dx dx dx dx
   (21) 
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where the total number of different indices k, l,..z is O and each index runs from 0 to n .  The 

mixed derivatives are:  

 

 
( ) ( )

, ...

...
... ...

O O

i i
jk gz

k l oj g k z

d y d y
q q

dx dx dx dx
   (22) 

 

The algorithm detailed in this section can be summarized as follows: 

 

1. Define the pseudo responses in the top level routine (Eq.  11) 

2. Compile an executable using OpenAD to compute 
dy

dx
 

3. Run the 
dy

dx
 calculation k times and assemble the output into a matrix G (Eq.  [12]) 

4. Determine the effective rank r using the RFA 

5. Calculate a QR decomposition of G  and keep the first r columns of Q in rQ  (Eq.  

[15]) 

6. Define the inputs in terms of the pseudo inputs and rQ  in the top level routine (Eq.  

[17]) 

7. Reconstruct the full derivatives (Eq.[18]) 

 

The steps in the RFA are: 
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1. Calcuate the SVD of G: TG USV  

2. Set the smallest singular value to 0 and keep the remaining r singular values: 0p   

3. Calculate an approximation of G: T

rG US V  

Repeat steps 2 and 3 until 
|| ||

|| ||





G G

G
 is no longer satisfied  
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CHAPTER 4 Examples and Test Cases 

4.1 Two-minute AD Examples 
 

To quickly introduce the two AD tools used in this method, ‘Two-minute’ examples 

will be shown to illustrate the basics of how to use each tool on a subroutine containing an 

easily differentiated function.  The examples follow the basic style given in the examples 

used in the OpenAD/F Manual [10] and Rapsodia Manual [5].  The manuals should be 

consulted for a more in depth presentation of the inner workings of each tool. 

4.1.1 OpenAD/F Example 

 

A simple subroutine will be used to illustrate the calculation of derivatives using 

OpenAD.  Figure 4.1 shows the subroutine that will be used in this example.  The function 

that the subroutine models consists of two outputs (y) and three inputs (x).  The parameters 

a, and b are simply scalar factors used in the calculation.  The only additions to this code that 

are required by OpenAD are the tags identifying the independent (!$openad INDEPENDENT(x)) 

and dependent variables (!$openad DEPENDENT(y)).  The goal is to calculate the derivatives of 

each output with respect to each input.  A main program called driver will be used with 

subroutine head in order to extract the derivatives.  Figure 4.2 shows the main program 

driver. 
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Figure 4.1: Simple subroutine for ‘Two-minute’ forward OpenAD example 

 

 

 

 
Figure 4.2: Main program used in the ‘Two-minute’ forward OpenAD example 

program driver 

  use OAD_active 

  implicit none  

  external head 

  type(active) :: x(3), y(2) 

  x(1)%v=1.0D0 

  x(2)%v=2.0D0 

  x(3)%v=3.0D0 

       

     x(1)%d=1.0D0 

     x(2)%d=0.0D0 

     x(3)%d=0.0D0 

     call head(x,y) 

     print *, 'driver running for x =',x%v 

     print *, '            yields y =',y%v,' dy/dx =',y%d 

      

     x(1)%d=0.0D0 

     x(2)%d=1.0D0 

     x(3)%d=0.0D0 

     call head(x,y) 

     print *, 'driver running for x =',x%v 

     print *, '            yields y =',y%v,' dy/dx =',y%d 

 

     x(1)%d=0.0D0 

     x(2)%d=0.0D0 

     x(3)%d=1.0D0 

     call head(x,y) 

     print *, 'driver running for x =',x%v 

     print *, '            yields y =',y%v,' dy/dx =',y%d 

 

end program driver 

subroutine head(x,y)  

  double precision, dimension(3) :: x 

  double precision, dimension(2) :: y 

  double precision :: a,b 

   

  a=2.0d0   

  b=3.0d0 

 

!$openad INDEPENDENT(x) 

  y(1)=a*x(1)**2+sin(b*x(2)) 

  y(2)=log(a*x(1))+cos(b*x(2))+1/x(3) 

!$openad DEPENDENT(y) 

 

end subroutine 

 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

34 

 The active type declaration shown in line 5 must be used in this top level routine for 

the active variables.  The active type will give each active variable two parts, a normal value 

(indicated by %v) and a derivative part (%d).  Lines 6, 7 and 8 initialized the value parts of 

x.  Before the subroutine is called, one input will be chosen for derivative calculation.  This 

variable’s derivative part will be ‘seeded’ with a value of 1 while all others are assigned 0.  

For the first call of head, this can be viewed as starting with  
   

   
   

   

   
   and 

   

   
   

as is shown in Table 2-2: Forward mode evaluation trace.  For subsequent calls of head, the 

seed will change to the other inputs.  The basic call to invoke the OpenAD tool for a forward 

transformation is openad –m f [file name] which will create a new transformed 

file.  After transforming and compiling all the necessary files for the example given above, 

the following output given in Figure 4.3: Output for the ‘Two-minute’ forward OpenAD 

example is returned. 

The forward mode allows for the calculation of derivatives of each output with 

respect to one input at a time.  As a quick check, the first set of derivative values given are 

   

   
 and 

   

   
.  The derivatives evaluated for        can easily be found analytically: 

 

   
    

                           and 
 

   
                  

 

  
  

 

  
    .  

An example that requires more precision is 
   

   
             When the analytically derived 

expression is evaluated in Matlab for       , the first 14 digits match exactly.   

The Makefile shown in Figure 4.4: Makefile contents for compiling and linking 

the ‘Two-minute’ forward OpenAD example contains all the steps for transforming and  
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Figure 4.3: Output for the ‘Two-minute’ forward OpenAD example 

 

  

 

 

 
Figure 4.4: Makefile contents for compiling and linking the ‘Two-minute’ forward 

OpenAD example 

 

ifndef F90C 

F90C=ifort 

endif 

RTSUPP=w2f__types OAD_active 

driver: $(addsuffix .o, $(RTSUPP)) driver.o head.prepped.pre.xb.x2w.w2f.post.o 

 ${F90C} -o $@ $^ 

head.prepped.pre.xb.x2w.w2f.post.f90 $(addsuffix .f90, $(RTSUPP)) : toolChain  

toolChain : head.prepped.f90 

 openad -c -m f $< 

%.o : %.f90 

 ${F90C} -o $@ -c $<  

clean:  

 rm -f ad_template* OAD_* w2f__*  iaddr*  

 rm -f head.prepped.pre* *.B *.xaif *.o *.mod driver driverE *~  

.PHONY: clean toolChain 

# the following include has explicit rules that could replace the openad script 

include MakeExplRules.inc 

 

driver running for x =   1.00000000000000   2.00000000000000   3.00000000000000      

            yields y =   1.72058450180107   1.98665080054364    

               dy/dx =   4.00000000000000   1.00000000000000  

 

driver running for x =   1.00000000000000   2.00000000000000   3.00000000000000      

            yields y =   1.72058450180107   1.98665080054364        

               dy/dx =   2.88051085995110   0.838246494596778      

 

driver running for x =   1.00000000000000   2.00000000000000   3.00000000000000      

            yields y =   1.72058450180107   1.98665080054364        

               dy/dx =   0.000000000000000E+000 -0.111111111111111      
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compiling all the necessary files for the example shown above.  After running the 

Makefile, an executable named ‘driver’ is created.  The Fortran compiler used is ifort. 

 

 To operate in the reverse mode, the prepped subroutine does not require changes.  

The main program driver will require some slight modifications.  Figure 4.5 contains the 

reverse mode driver.   

The main difference between the forward and reverse mode main programs is that the 

seeding is done with the outputs in the reverse mode.  The derivatives of one output with 

respect to all inputs are calculated at once in the reverse mode.  The reverse mode flag must 

be used when executing the OpenAD tool (openad –m rj [file name]).  Figure 4.6 

gives the output for the reverse mode example.   

 The outputs exactly match those given by the forward mode.  When using OpenAD 

on more complex codes, the same basic methods presented in these examples are used.   

4.1.2 Rapsodia Example 

 

Rapsodia will now be used to calculate first, second, and third order derivatives of the 

function in the subroutine from the previous example.  The subroutine itself does not require 

many changes.  Rapsodia does not require the tags that OpenAD used, but the active 

variables must be changed to the Rapsodia active type in both the subroutine and main 

program.  The Rapsodia prepped subroutine is shown in Figure 4.7.   
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Figure 4.5: Example reverse mode main program 

 

 
Figure 4.6: Reverse mode example output 

 

 
Figure 4.7: Rapsodia prepped subroutine for the ‘Two-minute’ example 

subroutine head(x,y) 

  INCLUDE 'RAinclude.i90' 

  TYPE(RARealD) :: x(3),y(2) 

  double precision :: a,b 

   

  a=2.0d0   

  b=3.0d0 

 

  y(1)=a*x(1)**2+sin(b*x(2)) 

  y(2)=log(a*x(1))+cos(b*x(2))+1/x(3) 

 

end subroutine  

 

driver running for x =  1.00000000000000  2.00000000000000   3.00000000000000      

          yields y =  1.72058450180107  1.98665080054364    

             dy/dx =  4.00000000000000  2.88051085995110  0.000000000000000E+000  

 

driver running for x =  1.00000000000000  2.00000000000000   3.00000000000000      

            yields y =  1.72058450180107  1.98665080054364        

               dy/dx =  1.00000000000000  0.838246494596778 -0.111111111111111        

program driver 

  use OAD_active 

  use OAD_rev 

  implicit none  

  external head 

  type(active) :: x(3), y(2) 

  x(1)%v=1.0D0 

  x(2)%v=2.0D0 

  x(3)%v=3.0D0 

 

  y(1)%d=1.0D0 

  y(2)%d=0.0D0 

  our_rev_mode%tape=.TRUE. 

  call head(x,y) 

  print *, 'driver running for x =',x%v 

  print *, '            yields y =',y%v,' dy/dx =',x%d 

 

  y(1)%d=0.0D0 

  y(2)%d=1.0D0 

  our_rev_mode%tape=.TRUE. 

  call head(x,y) 

  print *, 'driver running for x =',x%v 

  print *, '            yields y =',y%v,' dy/dx =',x%d 

 

end program driver 
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 The main program logic that is required for running Rapsodia on this subroutine is 

more involved than OpenAD, but it can mostly be reused easily for any general subroutine or 

program.  Figure 4.8 gives the complete main program that was used to run the Rapsodia 

example.  

 Lines 2-9 contain the Rapsodia specific variable declarations.  These variables are 

initialized in lines 17-23 by calling Rapsodia specific routines that are generated and must be 

compiled with the program.  The desired independent variables are set in the loops of lines 

31-35 with the call to RAset.  The derivatives are extracted and output in lines 45-58, which 

are looped over for each output.  The call to RAget sets the dependent variables.  A 

Makefile is shown in Figure 4.9 which contains the instructions for generating the 

necessary files from the Rapsodia library and linking them to the subroutine and main 

program.  The line ${RAPSODIAROOT}/Generator/generate.py -d 3 -o 1 -f $(GEN_DIR) must 

be set with the appropriate number of directions (d) and derivative order (o).  For first order 

derivatives of this example, the values are 3 and 1, respectively.  Again, an executable named 

‘driver’ is created to run the program.   

Figure 4.10 through Figure 4.12 contain the results for first through third order 

derivatives.  The only changes required to obtain a different order of derivatives are 

rebuilding the program after changing the order number in the main program and Makefile 

and changing the number of directions in the Makefile.  The results are printed with the 

appropriate multi-index of the derivative order.  For example, [1][2][0] corresponds to a 
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Figure 4.8: Main program for the ‘Two-minute’ Rapsodia example 

 

PROGRAM DRIVER 

  INCLUDE 'RAinclude.i90' 

  USE higherOrderTensorUtil 

  IMPLICIT NONE 

  INTEGER :: O, DIRS, max_order 

  TYPE(higherOrderTensor) :: T 

  INTEGER, DIMENSION(:,:), ALLOCATABLE :: SeedMatrix 

  REAL(KIND=RAdKind), DIMENSION(:,:), ALLOCATABLE :: TaylorCoefficients 

  REAL(KIND=RAdKind), DIMENSION(:), ALLOCATABLE :: CompressedTensor 

 

  TYPE(RARealD) :: x(3),y(2) 

  integer :: j,k,i,n 

 

  n=3  

  O=3 

 

  CALL setNumberOfIndependents(T, n) 

  CALL setHighestDerivativeDegree(T, O) 

  DIRS = getDirectionCount(T) 

  ALLOCATE(SeedMatrix(n, DIRS)) 

  CALL getSeedMatrix(T, SeedMatrix) 

  ALLOCATE(TaylorCoefficients(O, DIRS)) 

  ALLOCATE(CompressedTensor(DIRS)) 

 

  WRITE (*,'(A,I3.1)') 'Number of directions = ', DIRS 

 

  x(1)=1.0D0 

  x(2)=2.0D0 

  x(3)=3.0D0 

 

  DO j=1,n 

    DO i = 1, DIRS 

      CALL RAset(x(j), i, 1, REAL(SeedMatrix(j, i), KIND=RAdKind)) 

    END DO 

  END DO 

  

  CALL head(x,y) 

 

   DO i=1,2 

     WRITE(*,*) 'y(',i,') = ', y(i)%v 

   END DO 

 

  DO k=1,2 

 

   DO i = 1, O 

     DO j = 1, DIRS 

       CALL RAget(y(k), j, i, TaylorCoefficients(i, j)) 

     END DO 

   END DO 

   CALL setTaylorCoefficients(T, TaylorCoefficients) 

   CALL getCompressedTensor(T, O, CompressedTensor) 

   DO i = DIRS, 1,-1 

     WRITE (*,'(A)',ADVANCE='NO') 'Y' 

     DO j = 1, n 

       WRITE (*,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']' 

     END DO 

     WRITE (*,'(A,E25.17E3)') ' = ', CompressedTensor(i) 

   END DO 

 

  END DO 

 

 DEALLOCATE(CompressedTensor) 

 DEALLOCATE(TaylorCoefficients) 

 DEALLOCATE(SeedMatrix) 

      

END PROGRAM DRIVER 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

40 

   

 

 

 

 

 
Figure 4.9: Makefile contents for compiling and linking the ‘Two-minute’ Rapsodia 

example (first order) 

 

 

 

 

 

 

ifndef RAPSODIAROOT 

 $(error "environment variable  RAPSODIAROOT undefined") 

endif 

include ${RAPSODIAROOT}/Makefile.inc 

 

default: driver 

 ./$^ 

 

GEN_DIR=RALib 

 

RA_EXTRAS=${RAPSODIAROOT}/hotF90 

IPATH+=-I$(GEN_DIR) $(MODSEARCHFLAG)$(GEN_DIR) $(MODSEARCHFLAG)$(RA_EXTRAS) 

 

OBJS= \ 

$(addprefix $(RA_EXTRAS)/, $(addsuffix .o,$(HOTF90NAMES))) \ 

driver.o 

 

driver: sources $(OBJS) 

 $(F90C) $(FFLAGS) $(IPATH) -o $@ $(OBJS) $(GEN_DIR)/libRapsodia.a 

 

sources : FORCE 

 ${RAPSODIAROOT}/Generator/generate.py -d 3 -o 1 -f $(GEN_DIR) 

 cd $(GEN_DIR) && $(MAKE) 

 

FORCE: 

 

clean:  

 rm -rf $(GEN_DIR) *.o *.mod driver driver.out 

 

.PHONY: default sources clean 
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derivative that is first order in    and second order in   .   

Like the OpenAD example, these same basic steps are used in the examples and test 

cases that follow. 

4.2 Matrix-Vector Product Example 
 

This example will now implement the reduction method on a pre-constructed low 

rank matrix operator.  To start, consider a random     matrix  .  The matrix will be 

modified so that it is rank deficient by zeroing     singular values.  To visualize a rank 

deficient matrix, consider a 2D plane in a 3D space.  Consider   different vectors that live 

inside the plane.  Since the plane is 2 dimensional, any vector inside it can be expressed as a 

linear combination of two vectors only (any two independent vectors that live inside the 

plane).  In this case the matrix   would have rank equal to 2 only and not  .  In order to 

reduce this problem, one needs to find any two vectors that live in that plane.  The simplest 

way to do this is to run the reverse mode twice, once for 
   

  
 and once for 

   

  
.   

However, this does not guarantee that 
   

  
 and 

   

  
 are linearly independent vectors.  

To get around that, a new ‘pseudo’ response will be defined.  Let                  
   .  

The new variables are simply weighted (the weights     can be picked randomly) sums of the 

original responses.  Now differentiating the pseudo response gives: 
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Figure 4.10: Rapsodia example first order results 

 

 

 

 

 
Figure 4.11: Rapsodia example second order results 

 

 

 

 

Number of directions =   6 

 y( 1 ) =    1.7205845018010741      

 y( 2 ) =    1.9866508005436445      

 

Y[2][0][0] =  0.40000000000000000E+001 

Y[1][1][0] =  0.00000000000000000E+000 

Y[1][0][1] =  0.00000000000000000E+000 

Y[0][2][0] =  0.25147394837903327E+001 

Y[0][1][1] =  0.00000000000000000E+000 

Y[0][0][2] =  0.00000000000000000E+000 

 

Y[2][0][0] = -0.10000000000000000E+001 

Y[1][1][0] =  0.00000000000000000E+000 

Y[1][0][1] =  0.00000000000000000E+000 

Y[0][2][0] = -0.86415325798532940E+001 

Y[0][1][1] =  0.00000000000000000E+000 

Y[0][0][2] =  0.74074074074074070E-001 

Number of directions =   3 

 y( 1 ) =    1.7205845018010741      

 y( 2 ) =    1.9866508005436445      

 

Y[1][0][0] =  0.40000000000000000E+001 

Y[0][1][0] =  0.28805108599510980E+001 

Y[0][0][1] =  0.00000000000000000E+000 

 

Y[1][0][0] =  0.10000000000000000E+001 

Y[0][1][0] =  0.83824649459677758E+000 

Y[0][0][1] = -0.11111111111111110E+000 
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Figure 4.12: Rapsodia example third order results 

 

 

 

 

Number of directions =  10 

 y( 1 ) =    1.7205845018010741      

 y( 2 ) =    1.9866508005436445      

 

Y[3][0][0] =  0.00000000000000000E+000 

Y[2][1][0] =  0.46678715293069217E-006 

Y[2][0][1] =  0.00000000000000000E+000 

Y[1][2][0] =  0.37342972254439388E-005 

Y[1][1][1] =  0.46678715304171448E-006 

Y[1][0][2] =  0.00000000000000000E+000 

Y[0][3][0] = -0.25924587937029660E+002 

Y[0][2][1] =  0.37342972269982511E-005 

Y[0][1][2] =  0.46678715293069217E-006 

Y[0][0][3] =  0.00000000000000000E+000 

 

Y[3][0][0] =  0.19999992437660694E+001 

Y[2][1][0] = -0.15225116500872105E-006 

Y[2][0][1] = -0.28675537055988798E-006 

Y[1][2][0] =  0.10506924744690949E-005 

Y[1][1][1] =  0.10116055770836851E-006 

Y[1][0][2] = -0.25341172271708956E-007 

Y[0][3][0] = -0.75442155987740112E+001 

Y[0][2][1] =  0.10880373606525495E-005 

Y[0][1][2] =  0.14650791824166731E-006 

Y[0][0][3] = -0.74074046065409974E-001 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

44 

    

  
 

 

  
      

 

   

     

   

  

 

   

 (24) 

 

Equation (24) is simply a random sum of the rows of the matrix  .  If the weights are 

selected randomly, there is a high probability that 
    

  
 and 

    

  
 will be independent. 

This approach can be generalized for a      matrix with rank  .  Let the model be 

described by     .  For now assume that the matrix is random and constructed to be rank 

deficient with known rank           .  A pseudo response will be constructed as shown 

above.  Using reverse mode OpenAD,   sets of derivatives of the pseudo response will be 

taken.  Figure 4.13 shows the code for a matrix vector product with the pseudo response 

definition.   

The     collection of derivatives that are obtained,      
    

  
 

    

  
 
 

 , are now 

used to define pseudo inputs of the form        .  In order to keep the logical progression of 

variables for the OpenAD evaluation trace in the code,   will be defined in terms of   : 

     
   .  Forward mode OpenAD will then be used to obtain      

   

   
 

   

   
 
 

 Figure 

4.14 shows the code for a matrix vector product with the pseudo input definition.   

The full derivatives 
   

   
 (which in this case are the same as the   matrix) can be recovered by 

multiplying the reverse results by the forward results:       
  

 
 
 
 
   

   

 

 
   

   

 

 
 
 
 

 
    

  
 

    

  
 .   
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Figure 4.13: Matrix-vector product code with pseudo response definition 

 

 

 

 

 
Figure 4.14: Matrix-vector product code with pseudo input definition  

 

 

 

 

!$openad INDEPENDENT(x_pseudo)  

  do j=1,r 

    do i=1,n 

        x(i)=x(i)+x_pseudo(j)*J_pseudo(i,j) 

    end do 

  end do 

   

do i=1,m 

   do j=1,n 

      y(i)=y(i)+A(i,j)*x(j) 

   end do 

 end do 

!$openad DEPENDENT(y) 

!$openad INDEPENDENT(x) 

  

  do i=1,m 

    do j=1,n 

      y(i)=y(i)+A(i,j)*x(j) 

    end do 

  end do 

   

  do j=1,r 

    do i=1,m 

        y_pseudo(j)=y_pseudo(j)+y(i)*gamma(i,j) 

    end do 

  end do 

 

!$openad DEPENDENT(y_pseudo) 
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 In realistic problems, the rank will not be absolute, i.e.  all singular values will be 

non-zero, but the magnitudes of the singular values will be distributed such that an effective 

rank can be determined.  Another random rank deficient matrix will be used to demonstrate 

how the rank finding algorithm works.  A         random matrix with the singular value 

distribution shown in Figure 4.15 will be considered for this example.   

The singular value distribution shows that of the 500 singular values, only about 60 

actually contribute significantly.  A safe estimate of the effective rank would be 100.  

Obtaining the unreduced derivatives will yield the original matrix.  By doing an SVD on this 

output and taking the first 50 columns of the   matrix,   , pseudo inputs can be defined as 

shown above.  The         output of the derivatives of the responses with respect to the 

pseudo inputs will be multiplied by    to obtain the reduced approximation of     Using an 

effective rank of 100 yields a maximum matrix element relative error of 0.130%.   

To advance the demonstration of this method further towards actual engineering 

codes, the next examples will demonstrate when the rank must be determined by means of 

sampling the derivatives and using the rank finding algorithm. 
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Figure 4.15: Singular value distribution for the matrix-vector product example 
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4.3 Scalar-valued Model Example 
 

First, a scalar valued function will be considered.  The model that will be considered 

is:  

                      
 

      
 (25) 

 

where x, a, b, c, and d  are 1n  vectors, making y a scalar valued function.  A simple 

subroutine named 'head' was written to calculate this model along with a simple main 

program called a 'driver' that calls the subroutine and is used to extract the derivatives.  In 

order to prepare the code for use with OpenAD, tags must be inserted to identify the 

independent and dependent variables (typically formal parameters of ‘head’) to the code 

analysis.  Within ‘driver’ the corresponding inputs and outputs, passed as actual parameters 

to ‘head’, have to be declared with the OpenAD active type to carry the derivative values.  

After the code is prepared in this fashion for use with OpenAD, it generates a transformed 

version of 'head', which then is compiled together with ‘driver’ and calculates the first order 

derivatives of y with respect to the vector x. 

A Python script was written to execute the subspace identification algorithm with the 

compiled executable code.  The script takes a guess k for the effective rank and runs the code 

for k random input vectors x.  Within the Python script, the responses are collected into a 

matrix   of dimension n k .    is then QR factorized and the first r columns of   are used 

to evaluate if the error criterion is met.  Additional samples of the derivatives are used also to 
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evaluate the error.  If the error criterion is met, the first r columns of   are written to a file to 

be used as input for the higher-order derivative computation with Rapsodia.  Figure 4.16 

shows the Python script used with this model.  For the model above with n = 50 and random 

input vectors with 8 digits of precision for a, b, c, and d with an error criterion of 610  , 

the effective rank was found to be r = 3.   

A process similar to the one for OpenAD is used to prepare the program for use with 

Rapsodia.  The active variables are identified via a similar manual type change in the 'driver' 

and the source transformation capabilities of OpenAD can be used to perform the type 

change in the ‘head’ subroutine.  Because of the additional steps to determine the 

propagation directions and compute the derivative tensors, the logic in the 'driver' has 

additional steps for Rapsodia, but they follow a simple recipe and can be transferred between 

such driver programs with relative ease.  For efficiency, the number of directions that the 

derivatives are calculated for along with the desired derivative order must be provided to the 

library generator implemented by Rapsodia.  Once the library is generated, the type-changed 

‘head’, the ‘driver’, and the library can be compiled and linked.  For first order calculations, 

the number of directions is simply the number of input variables for which derivatives are 

calculated.  Once the derivatives 
  

   
 are calculated, the full derivatives can be reconstructed 

by multiplying the Rapsodia results by the    matrix used as input.  Using an effective rank 

of      , the reconstructed derivatives were found to have relative errors on the order of 

1310  compared to results obtained from an unreduced Rapsodia calculation.   
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Figure 4.16: Python script used for the scalar-valued model example 

 

 

while (z>e): 

 while (i<k): 

              #run the forward driver 

  status,output=commands.getstatusoutput('./driver ' + str(n) ) 

  print status 

  #input to G from output of driver 

  G[:,i]=numpy.genfromtxt('der_out.txt') 

  j=0 

  while (j<n): 

   In[j,5]=10*random.random() 

   j=j+1 

 

  numpy.savetxt('Rinput.in.txt',In) 

  i=i+1 

      

 #calculate QR of G 

 Q,R=linalg.qr(G) 

 Qr=Q[:,0:k] 

       #generate additional samples for error testing 

 Gadd=numpy.zeros((n,k)) 

 p=0 

 while (p<k): 

  j=0 

  while (j<n): 

   In[j,5]=10*random.random() 

   j=j+1 

 

  numpy.savetxt('Rinput.in.txt',In) 

  #run the forward driver 

  status,output=commands.getstatusoutput('./driver ' + str(n) ) 

  print status 

  #input to Gadd from output of driver 

  Gadd[:,p]=numpy.genfromtxt('der_out.txt') 

  p=p+1 

 

 z=linalg.norm(  dot( numpy.eye(n)-dot(Qr,Qr.T),Gadd)  ) 

 print z 

 k=k+1 

 Gnew=numpy.zeros((n,k)) 

 Gnew[:,0:k-1]=G 

 numpy.savetxt('Gnew',Gnew)  

 G=numpy.zeros((n,k)) 

 G=Gnew  

 numpy.savetxt('G',G)  

 

#output Q to file for input 

numpy.savetxt('Q.in.txt',Qr) 

 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

51 

Using Rapsodia to calculate second order derivatives simply involves changing the 

derivative order (o = 2) and the number of directions (d = 6) to regenerate the library and 

recompiling the code.  The output can then be constructed into a matrix   of size r r  and 

the full derivatives can be recovered by:      
  which results in an n n  symmetric matrix.  

When the second order derivatives are calculated for the example above, there are only 6 

directions required for an effective rank of 3 as opposed to 1275 directions for the full 

problem.  The relative errors of the reduced derivatives are on the order of 1210 . 

Third order derivatives were also calculated using this example.  The unreduced 

problem would require 22,100 directions while the reduced problem only requires 10.  

Relative errors were much higher for this case but still at a reasonable order of 610 .  The 

relative errors for each derivative order are summarized in Table 4-1.  The maximum 

unreduced relative error is the maximum relative error between the unreduced Rapsodia 

calculations and analytical results.  The average unreduced relative errors are on the order of 

     .  Note that for the third order calculations, not all values for the unreduced case were 

calculated due to the difficulty of obtaining all values at once.  The full codes for this 

example are given in Appendix A.  

 

 

 

 

 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

52 

 

 

 

 

 

 

 

 

Table 4-1: Results for the scalar-valued model example 

Derivative 
Order 

Unreduced 
Directions 

Reduced 
Directions 

Reduced 
Relative 
Error 

Maximum 
Unreduced 

Relative Error 

1 50 3 10
-13

 1.49% 
2 1275 6 10

-12
 4.21% 

3 22,100 10 10
-6

 2.24% 
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4.4 Vector-valued Model Example 
 

It is important to note here that in practice the derivatives are employed to construct a 

surrogate model that approximates the original function.  Therefore, it is much more 

instructive to talk about the accuracy of the surrogate model employed rather than the 

accuracy of each derivative.  This is illustrated in the MATWS test case by using an 

engineering model. 

Problems with multiple outputs require a slightly different approach when 

determining the subspace.  The following example will be considered: 

                             
 

      
                  (26) 

               
 

      
 

 

In the OpenAD version of the subroutine, the responses will be combined into a pseudo 

response defined by the following:  

                            (27) 

 

where    are randomly generated factors that are unique for each execution of the code.  The 

derivatives that OpenAD will calculate are 
   

  
, which is an 1n  vector.  Following the same 

procedure for the single output case, the subspace identification script was run for n = 50 and 

610  .  The effective rank was found to be r = 5.    
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The Rapsodia version of the code is executed in essentially the same manner with a 

loop over each output.  The first, second, and third order derivatives were recovered for this 

example with errors that were of the same magnitudes as the single output case.  For first 

order derivatives, the number of directions required in the unreduced problem is 50 for each 

output, making the total number of derivatives 250.  The reduced case only requires 5 

derivatives for each output, 25 in total.  The total number of derivatives for the unreduced 

second and third order calculations were 6,375 and 110,500, respectively, compared to 15 

and 35 for the reduced problem.  The errors were on the same order as the scalar-valued 

model test case.  The results are shown in Table 4-2.   

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

Chapter 4: Examples and Test Cases 

 

55 

 

 

 

 

 

 

 

 

 

Table 4-2: Results for the vector-valued model example 

Derivative 
Order 

Unreduced 
Directions 

Reduced 
Directions 

Reduced 
Relative 
Error 

1 50 5 10
-13

 
2 1275 15 10

-12
 

3 22,100 35 10
-6
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4.5 Important Directions 
 

The next two examples will highlight some unique features of using this method for 

derivative calculations.  First, the property of derivatives not changing for inputs that are 

orthogonal to the model subspace will be shown in an example.  In order to visualize this 

concept, consider two three-dimensional vectors   and   that are the basis for a model 

subspace, shown in Figure 4.17.  Derivatives are then calculated with a vector   as input.  It 

can be shown that the derivatives are the same when calculated using a vector   that is a 

projection of   onto the plane spanned by   and  .  This means that the components of   

that are perpendicular to the plane spanned by   and   do not factor into the derivative 

calculation and can be removed as is done with the reduction techniques employed in the 

previous example problems.  

A larger example will now be run to verify that these ideas hold true for a general 

problem space.  The following function using 100 inputs and five vectors as the basis for the 

problem subspace.  

 

                    
        

   
 (28) 

 

Using Matlab, a, b, c,  , e and w where created to be random       single 

precision vectors with   used as the input vector for the initial derivative calculation using 

OpenAD.  A vector p was then calculated as a projection of w onto the space spanned by a, b, 
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Figure 4.17: Vector projection onto a plane 
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c,  , and e and used as a second input vector.  The resulting derivative values were on the 

orders of     and     with the maximum absolute difference between the two sets of 

derivatives being           .  As expected, the two sets of derivatives are essentially the 

same.  

One concern that can arise with this method is the fact that the rank is determined via 

a collection of random samples of the model in question.  Some may have concerns that 

using random samples can risk not capturing the important directions in a model’s output and 

can lead to highly inaccurate reduced output.  This could prove to be an issue when applied 

to models that do not have sufficient benchmarking data to check the accuracy of reduced 

output.   

A model with two directions will be considered.  To be able to show what is 

happening visually in a geometric sense, only two inputs will be considered for now.  The 

model that will be discussed is as follows: 

 

                                  (29) 

 

where  ,  , and   are     vectors.  The vectors   and   will be defined so that their 

components are far enough apart to give the model two distinct directions.     
 
 
  and 

   
 
 
  are shown graphically in the   ,    plane in Figure 4.18.   
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When the derivatives of the function are sampled, only inputs that are near the 

directions of   and   (approximated by the red circles in Figure 4.18) will yield useful 

information that captures these directions.  Any samples not in this area will not contribute 

significantly to determining the rank of the problem.  When these directions are not known 

beforehand, it must be insured that inputs used to sample the derivatives contain enough of 

the components of these directions in order to be useful.   

This idea will be expanded and tested with a model consisting of 100 inputs and three 

orthogonal directions.  The model will be similar to the one above. 

 

                                                  (30) 

 

It is clear that when the rank finding algorithm is applied to this model, the effective 

rank should be three.  First, the rank finding algorithm will be applied but instead of 

completely random inputs, random inputs that are near orthogonal to the problem space will 

be used.  As expected, the resulting sets of derivatives are essentially equal.  This type of 

result will not work well in the error criterion step (          ) of the RFA.  Table 4-3 

gives results of the error criterion evaluated for effective rank estimations of        .   

It can be seen from the table that the orthogonal inputs do not correctly evaluate an 

effective rank of three.  Now, the RFA will be run as it is intended, with completely random 

inputs and a cutoff error criterion of     .  The results are given in Table 4-4.   
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Figure 4.18: Graphical representation of the problem directions with the possible sampling 

areas indicated 
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Table 4-3: Error criterion evaluations with random orthogonal inputs 

Effective rank estimation Error criterion 

1 
             

2 
             

3 
             

4 
             

5 
             

 

 

 

 

Table 4-4: Error criterion evaluations with random inputs 

Effective rank estimation Error criterion 

1 
       

2 
        

3 
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The RFA now correctly selects an effective rank of three.  The error criterion 

evaluations exhibit a clear drop between each estimation of the rank with a very large drop 

when the expected value of three is chosen.  This example showcases that random inputs are 

necessary to obtain proper results in the RFA.   

4.6 Third Order function Approximated with Second Order derivatives 
 

By being able to efficiently calculate higher order derivatives, detailed surrogate 

models can be constructed that allow for faster calculations than using the full model.  The 

surrogate models that will be discussed here involves using a Taylor expansion to 

approximate the model.  The basic form that will be used is: 

 

     
  

  
   

   

   
      

   

   
    (31) 

 

where   is the highest order of derivative used.  For this example, first and second order 

derivatives will be used to construct a surrogate model for a third order function.  It will be 

shown that sufficient accuracy can be achieved by not only using reduced derivative 

calculations, but by using derivatives up to an order less than the actual model order.  The 

model that will be used in this example is: 

 

                            
 

      
 (32) 
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where all vectors are      .  Since this model uses vectors as inputs, the second order 

Taylor series approximation used for the surrogate model will be modified as follows: 

 

                (33) 

 

where   is the       Jacobian and   is the         Hessian.  This expression also 

highlights another benefit of trying to only use up to second order derivatives.  Using higher 

order derivative tensors will lead to more complex expressions for surrogate models.  If the 

model does require higher order derivatives, they can still certainly be used, but the second 

order approximation involves only simple matrix vector products.   

 When the RFA with a cutoff error criterion of      is applied to a code evaluating 

the model in Equation (32), the effective rank is found to be five, as expected.  Reduced 

inputs were defined in a Rapsodia version of the code as was done in the previous examples.  

The resulting reduced derivatives were collected in Matlab and a surrogate model was 

constructed.  Table 4-5 gives the values calculated by the actual model and the surrogate 

model for inputs perturbed from a vector consisting of all ones.   

The table shows that depending on the desired relative error, the surrogate model 

evaluated around one point can be used to estimate the model values for a range of inputs  

around that point.  Figure 4.19 shows the surrogate model plotted against the actual model 
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Table 4-5: Surrogate model error evaluation around one point 

Input 
Perturbation 

Actual Value 
Surrogate Model 

Value 
Relative Error 

-5%                               3.173% 

-2%                               1.320% 

-1%                             0.6679% 

+1%                                0.6817% 

+2%                               1.376% 

+5%                               3.520% 
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Figure 4.19: Second order surrogate model plotted with actual function 
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for inputvectors consisting of 100 values all equal to 0.9750 to 1.280.  The surrogate model 

derivatives were evaluated at five points:                                  and      .  

The surrogate model was then used to obtain estimated values of the model for       and 

       input perturbations around these points. In total, the surrogate model shown in the 

figure consists of 25 points.  

 

4.7 MATWS Test Case 
 

In the MATWS code package, single channel calculations were performed using the 

following inputs: axial expansion coefficient, Doppler coefficient, moderator temperature 

coefficient, control rod driveline, and core radial expansion coefficient.  The outputs of 

interest are various temperatures within the channel: coolant temperature, structure 

temperature, cladding temperature, and fuel temperature.  This gives 4 5  output for the first 

order derivatives and 15 and 35 directions for second and third order, respectively.  The 

following figures (Figure 4.20 through Figure 4.24) give plots of the fuel temperature 

(TFUEL) for coarse variations (          ) of each input variable separately in order to 

see the amount of non-linearity.  First and second order polynomial fits are included with 

each figure along with the corresponding    values.  The degree to which each order 

polynomial fits can be used to estimate what order of dependence TFUEL has on each 

variable.  
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Figure 4.20: Fuel temperature for variations of the axial expansion reactivity coefficient 

 

 

Figure 4.21: Fuel temperature for variations of the Doppler reactivity coefficient 
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Figure 4.22: Fuel temperature for variations of the coolant reactivity coefficient 

 

 

Figure 4.23: Fuel temperature for variations of the control rod expansion reactivity 

coefficient 
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Figure 4.24: Fuel temperature for variations of the radial core expansion coefficient 
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After applying the subspace identification algorithm (Python script in Appendix B) 

and using OpenAD [11], it was found that the effective rank was r = 3, giving 6 and 10 

directions for second and third order derivative calculations.  The accuracy of the reduced 

derivative calculations will be evaluated by constructing a surrogate model for the output 

temperature vector T  using the reference temperature vector 0T  and input perturbation vector 

 : 

         

 
 
 
 
 
       

       

       

        
 
 
 
 

 (34) 

 

where   is the 4 5  Jacobian matrix of first order derivatives and    are the 5 5  Hessian 

matrices of second order derivatives that correspond to each output.  Using an input 

perturbation of 0.01% the maximum relative errors were found using the unreduced and 

reduced derivatives.  The ‘Relative Error (AD)’ column of Table 4-6 gives the maximum 

relative error between the temperatures found using the unreduced and reduced surrogate 

models.  The ‘Relative Error (Real)’ column of Table 4-6 gives the maximum relative error 

between the temperatures found using the reduced surrogate model and the actual values that 

MATWS gives. 

The output temperatures that MATWS calculates are ~ 800o F , making these errors 

on the order of single degrees.   
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Table 4-6: MATWS test case results 

Derivative 
Order 

Unreduced 
Directions 

Reduced 
Directions 

Relative 
Error (AD) 

Relative 
Error (Real) 

1 5 3 59.216 10  36.695 10  
2 15 6 41.252 10  33.182 10  
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CHAPTER 5 Conclusions and Future Work Recommendations 

 

5.1 Conclusions 
 

This thesis has presented a new way to more efficiently use automatic differentiation 

in order to calculate the derivatives of a computer code consisting of a computational model 

with many inputs and outputs.  This method can theoretically be applied to any program that 

computes outputs based on multiple inputs, but the most effective use is when the 

computational model in question is rank deficient.  This rank deficiency can be exploited by 

using the principles of ESM.  A reduced set of pseudo variables can then be introduced into a 

version of the source code that will be transformed using the AD software.  An approximate 

set of reduced derivatives can then be assembled using simple matrix-vector operations.  

These derivatives are then suitable for usage in a variety of different applications including 

sensitivity analysis, uncertainty quantification, and surrogate modeling.  

 

5.2 Future Work Recommendations 
 

Future work with this method will include the application to codes that are 

differentiable with OpenAD and Rapsodia and are able to utilize larger input and output 

streams.  Potential codes include the components of the SCALE package from Oak Ridge 

National Lab, namely CENTRM and BONAMI.  These codes process thousands of cross 

section values and would benefit from a more efficient differentiation method.  Within 
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SCALE, the passage of derivative information from one differentiated code module to 

another would be of interest as well.   
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Appendix A 

 

OpenAD code for the Scalar-valued Model Example 

 

 

 

 

 

 

subroutine head(x,ypseudo,n)  

  integer :: i,n 

  double precision :: x(n) 

  double precision :: ypseudo,y1,y2,y3,y4 

  double precision :: a(n),b(n),c(n),d(n),e(n) 

 

  open(unit=20, file='Rinput.in.txt', status='old', action='read')   

   

  do i=1,n 

    read(20,*) a(i),b(i),c(i),d(i),e(i),x(i) 

  end do 

   

  close(20) 

 

  y=0.0d0 

  y1=0.0D0 

  y2=0.0D0 

  y3=0.0D0 

  y4=0.0D0 

 

!$openad INDEPENDENT(x) 

 

  do i=1,n 

       y1=y1+a(i)*x(i) 

       y2=y2+b(i)*x(i) 

       y3=y3+c(i)*x(i) 

       y4=y4*d(i)*x(i) 

  end do 

 

  ypseudo=y1+y2**2+sin(y3)+1/(1+exp(y4)) 

 

!$openad DEPENDENT(ypseudo) 

 

end subroutine 
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program driver 

  use OAD_active 

  use OAD_rev 

  implicit none  

  external head 

  type(active),allocatable :: x(:) 

  type(active) :: ypseudo 

  integer :: i,n,j 

  character*3 :: ypos 

  character(len=5) :: BUFFER 

  

  call getarg(1,BUFFER) 

  read(BUFFER,'(i10)') n 

 

  allocate(x(n)) 

   

  open(unit=11, file='der_out.txt', action='write') 

 

 our_rev_mode%tape=.TRUE. 

 

   ypseudo%d=1.0D0 

   x%d=0.0D0 

   call head(x,ypseudo,n) 

   do j=1,n 

      write(11,*) x(j)%d 

   end do 

 

 close(11) 

   

end program driver 
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Rapsodia code for the Scalar-valued Model Example 

 

 

  

PROGRAM DRIVER 

  INCLUDE 'RAinclude.i90' 

  USE higherOrderTensorUtil 

  IMPLICIT NONE 

  INTEGER :: O, DIRS, max_order 

  TYPE(higherOrderTensor) :: T 

  INTEGER, DIMENSION(:,:), ALLOCATABLE :: SeedMatrix 

  REAL(KIND=RAdKind), DIMENSION(:,:), & 

                               ALLOCATABLE :: TaylorCoefficients 

  REAL(KIND=RAdKind), DIMENSION(:),   & 

                               ALLOCATABLE :: CompressedTensor 

 

  TYPE(RARealD), allocatable :: x(:), pseudo(:) 

  TYPE(RARealD) :: y 

  integer :: i,n,j,k,p 

 

  max_order=1 

   

  n=100 

  k=3 

 

  allocate(x(n),pseudo(k)) 

 

  CALL setNumberOfIndependents(T, k) 

  CALL setHighestDerivativeDegree(T, max_order) 

  DIRS = getDirectionCount(T) 

  ALLOCATE(SeedMatrix(k, DIRS)) 

  CALL getSeedMatrix(T, SeedMatrix) 

  ALLOCATE(TaylorCoefficients(max_order, DIRS)) 

  ALLOCATE(CompressedTensor(DIRS)) 

 

  !output file 

  open(unit=10, file='deriv_out.txt', action='write') 

 

 

    WRITE (*,'(A,I3.1)') 'Number of directions = ', DIRS 

     

    do j=1,k 

    do i=1,DIRS 

      CALL RAset(pseudo(j), i, 1, REAL(SeedMatrix(j, i), KIND=RAdKind)) 

    end do 

    end do 

 

    call head(x,y,n,k,pseudo) 

 

    do i=1,max_order 

      do j=1,DIRS 

       CALL RAget(y, j, i, TaylorCoefficients(i, j)) 

      end do 

    end do 

 

    CALL setTaylorCoefficients(T, TaylorCoefficients) 

    CALL getCompressedTensor(T, max_order, CompressedTensor) 

 

   DO i = DIRS, 1,-1 

     DO j = 1, k 

       WRITE (10,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']' 

     END DO 

     WRITE (10,*) CompressedTensor(i) 

   END DO 

 

 

 close(10) 

 DEALLOCATE(CompressedTensor) 

 DEALLOCATE(TaylorCoefficients) 
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(continued)  

 

 

   CALL setTaylorCoefficients(T, TaylorCoefficients) 

   CALL getCompressedTensor(T, max_order, CompressedTensor) 

 

   DO i = DIRS, 1,-1 

     DO j = 1, k 

       WRITE (10,'(A,I1,A)',ADVANCE='NO') '[', SeedMatrix(j, i), ']' 

     END DO 

     WRITE (10,*) CompressedTensor(i) 

   END DO 

 

 

 close(10) 

 DEALLOCATE(CompressedTensor) 

 DEALLOCATE(TaylorCoefficients) 

 DEALLOCATE(SeedMatrix) 

      

END PROGRAM DRIVER 

 

subroutine head(x,y,n,k,pseudo) 

  INCLUDE 'RAinclude.i90' 

  integer :: n,i,k 

  TYPE(RARealD) :: x(n), pseudo(k),y1,y2,y3,y4,y 

  double precision :: a(n),b(n),c(n),d(n),e(n),q(n,k) 

  

  !read input 

  open(unit=42, file='Rinput.in.txt', status='old', action='read')   

  

  do i=1,n 

    read(42,*) a(i),b(i),c(i),d(i),e(i),x(i)%v 

  end do 

 

  close(42) 

 

  !read Q 

  open(unit=55, file='Q.in.txt', status='old', action='read') 

 

  do i=1,n 

      read(55,*) (q(i,j),j=1,k) 

  end do 

 

  close(55) 

   

  !pseudo variables 

 

      do j=1,k 

       do i=1,n 

        pseudo(j)%v=pseudo(j)%v+q(i,j)*x(i)%v 

       end do 

 end do 

        

       x=0.0d0 

       do i=1,n 

         do j=1,k 

        x(i)=x(i)+q(i,j)*pseudo(j) 

        end do 

 end do 

 

  !model calculation 

 

  do i=1,n 

       y1=y1+a(i)*x(i) 

       y2=y2+b(i)*x(i) 

       y3=y3+c(i)*x(i) 

       y4=y4*d(i)*x(i) 

  end do 

 

  y=y1+y2**2+sin(y3)+1/(1+exp(y4)) 
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(continued) 

 
  

 

  !model calculation 

 

  do i=1,n 

       y1=y1+a(i)*x(i) 

       y2=y2+b(i)*x(i) 

       y3=y3+c(i)*x(i) 

       y4=y4*d(i)*x(i) 

  end do 

 

  y=y1+y2**2+sin(y3)+1/(1+exp(y4)) 

 

  !end model calculation 

 

end subroutine  

 

        

       x=0.0d0 

       do i=1,n 

         do j=1,k 

        x(i)=x(i)+q(i,j)*pseudo(j) 

        end do 

 end do 

 

  !model calculation 

 

  do i=1,n 

       y1=y1+a(i)*x(i) 

       y2=y2+b(i)*x(i) 

       y3=y3+c(i)*x(i) 

       y4=y4*d(i)*x(i) 

  end do 

 

  y=y1+y2**2+sin(y3)+1/(1+exp(y4)) 

 

  !end model calculation 

 

end subroutine  
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Appendix B 

 

Python script used for the subspace identification algorithm for MATWS 
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#!/usr/local/apps/python-2.6.5/bin/python 

 

from scipy import linalg 

import numpy, getopt, sys 

from numpy import dot, transpose, zeros, random 

import os, commands 

 

e=0.000001 

 

#get value of n 

n=int(sys.argv[1]) 

#get value of k 

k=int(sys.argv[2]) 

 

In=numpy.genfromtxt('input.txt') 

Y=numpy.zeros((n,k)) 

 

i=0 

while (i<k): 

   #run the forward driver 

   status,output=commands.getstatusoutput('./reactor_OAD_MP < 

Reference_ULOF.input > output') 

   print status 

   #input Y from output of forward driver 

   Y[:,i]=numpy.genfromtxt('der_out.txt') 

   j=0 

   while(j<n): 

      In[j]=In[j]+In[j]*0.2 

      j=j+1 

 

   numpy.savetxt('input.txt',In) 

   i=i+1 

 

numpy.savetxt('Y',Y) 

 

#calculate SVD of Y 

U,S,V=linalg.svd(Y) 

 

#determine reduced Y 

r=S.shape[0] 

S[r-1]=0 

Yk=dot(dot(U,linalg.diagsvd(S,len(Y),len(V))),V) 

Yk0=Yk 

i=2 

while (linalg.norm(Y-Yk0)/linalg.norm(Y) < e): 

   Yk=Yk0 

   S[r-i]=0 

   Yk0=dot(dot(U,linalg.diagsvd(S,len(Y),len(V))),V) 

   i=i+1 

 

#calculate QR of Yk 

Q,R=linalg.qr(Yk) 

r=numpy.sum(S > 1e-10)+1 

Q1=Q[:,0:r] 

 

#output Q to file for reverse input 

numpy.savetxt('Q.in.txt',Q1) 


